579 research outputs found

    The Employment and Economic Advancement of African-Americans in the Twentieth Century

    Get PDF
    In this article we examine the progress of African–Americans in the American labour market over the course of the twentieth century. We trace their progress as African-Americans moved from low-skill low-wage jobs in southern agriculture to a panoply of jobs including high-skill, high-wage jobs in industries and occupations across the country.We also document the migrations and improvements in educational achievement that have made this progress possible. We examine the progress yet to be made and especially the problems of lack of education and incarceration suffered by African–American males. Finally, we examine the importance of anti-discrimination laws and affirmative action in promoting African–American economic progress

    Comparison of Three Measures of Stuttering Severity

    Get PDF
    Various measures of severity of stuttering are available and are used both clinically and experimentally. Information concerning the relationships among these various measures thus should be useful in planning effective therapy or in designing experiments. In a previous study Sherman and Trotter (4) evaluated the relationship between two measures of the severity of stuttering. One measure was the mean scale value of severity of individual moments of stuttering derived from listeners\u27 responses; the other measure was frequency of stuttering. Measures were taken on tape-recorded readings of a 500-word passage. The obtained estimate of the strength of relationship was a Pearson r of .61

    Informed selection of future climates

    Get PDF
    Analysis of climate change is often computationally burdensome. Here, we present an approach for intelligently selecting a sample of climates from a population of 6800 climates designed to represent the full distribution of likely climate outcomes out to 2050 for the Zambeze River Valley. Philosophically, our approach draws upon information theory. Technically, our approach draws upon the numerical integration literature and recent applications of Gaussian quadrature sampling. In our approach, future climates in the Zambeze River Valley are summarized in 12 variables. Weighted Gaussian quadrature samples containing approximately 400 climates are then obtained using the information from these 12 variables. Specifically, the moments of the 12 summary variables in the samples, out to order three, are obliged to equal (or be close to) the moments of the population of 6800 climates. Runoff in the Zambeze River Valley is then estimated for 2026 to 2050 using the CliRun model for all 6800 climates. It is then straightforward to compare the properties of various subsamples. Based on a root of mean square error (RMSE) criteria, the Gaussian quadrature samples substantially outperform random samples of the same size in the prediction of annual average runoff from 2026 to 2050. Relative to random samples, Gaussian quadrature samples tend to perform best when climate change effects are stronger. We conclude that, when properly employed, Gaussian quadrature samples provide an efficient and tractable way to treat climate uncertainty in biophysical and economic models. This article is part of a Special Issue on “Climate Change and the Zambezi River Valley” edited by Finn Tarp, James Juana, and Philip War

    A role for glycolipid biosynthesis in severe fever with thrombocytopenia syndrome virus entry

    Get PDF
    A novel bunyavirus was recently found to cause severe febrile illness with high mortality in agricultural regions of China, Japan, and South Korea. This virus, named severe fever with thrombocytopenia syndrome virus (SFTSV), represents a new group within the Phlebovirus genus of the Bunyaviridae. Little is known about the viral entry requirements beyond showing dependence on dynamin and endosomal acidification. A haploid forward genetic screen was performed to identify host cell requirements for SFTSV entry. The screen identified dependence on glucosylceramide synthase (ugcg), the enzyme responsible for initiating de novo glycosphingolipid biosynthesis. Genetic and pharmacological approaches confirmed that UGCG expression and enzymatic activity were required for efficient SFTSV entry. Furthermore, inhibition of UGCG affected a post-internalization stage of SFTSV entry, leading to the accumulation of virus particles in enlarged cytoplasmic structures, suggesting impaired trafficking and/or fusion of viral and host membranes. These findings specify a role for glucosylceramide in SFTSV entry and provide a novel target for antiviral therapies

    Observations of Shear Stress Effects on Staphylococcus aureus Biofilm Formation

    Get PDF
    Staphylococcus aureus bacteria form biofilms and distinctive microcolony or “tower” structures that facilitate their ability to tolerate antibiotic treatment and to spread within the human body. The formation of microcolonies, which break off, get carried downstream, and serve to initiate biofilms in other parts of the body, is of particular interest here. It is known that flow conditions play a role in the development, dispersion, and propagation of biofilms in general. The influence of flow on microcolony formation and, ultimately, what factors lead to microcolony development are, however, not well understood. The hypothesis being examined is that microcolony structures form within a specific range of levels of shear stress. In this study, laminar shear flow over a range of 0.15 to 1.5 dynes/cm2 was examined. It was found that microcolony structures form in a narrow range of shear stresses around 0.6 dynes/cm2. Further, measurements of cell density as a function of space and time showed that shear dependence can be observed hours before microcolonies form. This is significant because, among other physiologic flows, this is the same shear stress found in large veins in the human vasculature, which, along with catheters of similar diameters and flow rates, may therefore play a critical role in biofilm development and subsequent spreading of infections throughout the body

    Observations of Shear Stress Effects on Staphylococcus aureus Biofilm Formation

    Get PDF
    Staphylococcus aureus bacteria form biofilms and distinctive microcolony or tower structures that facilitate their ability to tolerate antibiotic treatment and to spread within the human body. The formation of microcolonies, which break off, get carried downstream, and serve to initiate biofilms in other parts of the body, is of particular interest here. It is known that flow conditions play a role in the development, dispersion, and propagation of biofilms in general. The influence of flow on microcolony formation and, ultimately, what factors lead to microcolony development are, however, not well understood. The hypothesis being examined is that microcolony structures form within a specific range of levels of shear stress. In this study, laminar shear flow over a range of 0.15 to 1.5 dynes/cm2 was examined. It was found that microcolony structures form in a narrow range of shear stresses around 0.6 dynes/cm2 Further, measurements of cell density as a function of space and time showed that shear dependence can be observed hours before microcolonies form. This is significant because, among other physiologic flows, this is the same shear stress found in large veins in the human vasculature, which, along with catheters of similar diameters and flow rates, may therefore play a critical role in biofilm development and subsequent spreading of infections throughout the body.IMPORTANCE It is well known that flow plays an important role in the formation, transportation, and dispersion of Staphylococcus aureus biofilms. What was heretofore not known was that the formation of tower structures in these biofilms is strongly shear stress dependent; there is, in fact, a narrow range of shear stresses in which the phenomenon occurs. This work quantifies the observed shear dependence in terms of cell growth, distribution, and fluid mechanics. It represents an important first step in opening up a line of questioning as to the interaction of fluid forces and their influence on the dynamics of tower formation, break-off, and transportation in biofilms by identifying the parameter space in which this phenomenon occurs. We have also introduced state-of-the-art flow measurement techniques to address this problem
    • …
    corecore