22 research outputs found

    Simulated Disperser Analysis: determining the number of loci required to genetically identify dispersers

    Full text link
    Empirical genetic datasets used for estimating contemporary dispersal in wild populations and to correctly identify dispersers are rarely tested to determine if they are capable of providing accurate results. Here we test whether a genetic dataset provides sufficient information to accurately identify first-generation dispersers. Using microsatellite data from three wild populations of common starlings (Sturnus vulgaris), we artificially simulated dispersal of a subset of individuals; we term this &lsquo;Simulated Disperser Analysis&rsquo;. We then ran analyses for diminishing numbers of loci, to assess at which point simulated dispersers could no longer be correctly identified. Not surprisingly, the correct identification of dispersers varied significantly depending on the individual chosen to &lsquo;disperse&rsquo;, the number of loci used, whether loci had high or low Polymorphic Information Content and the location to which the dispersers were moved. A review of the literature revealed that studies that have implemented first-generation migrant detection to date have used on average 10 microsatellite loci. Our results suggest at least 27 loci are required to accurately identify dispersers in the study system evaluated here. We suggest that future studies use the approach we describe to determine the appropriate number of markers needed to accurately identify dispersers in their study system; the unique nature of natural systems means that the number of markers required for each study system will vary. Future studies can use Simulated Disperser Analysis on pilot data to test marker panels for robustness to contemporary dispersal identification, providing a powerful tool in the efficient and accurate design of studies using genetic data to estimate dispersal.<br /

    Systemic Analysis of Heat Shock Response Induced by Heat Shock and a Proteasome Inhibitor MG132

    Get PDF
    The molecular basis of heat shock response (HSR), a cellular defense mechanism against various stresses, is not well understood. In this, the first comprehensive analysis of gene expression changes in response to heat shock and MG132 (a proteasome inhibitor), both of which are known to induce heat shock proteins (Hsps), we compared the responses of normal mouse fibrosarcoma cell line, RIF- 1, and its thermotolerant variant cell line, TR-RIF-1 (TR), to the two stresses. The cellular responses we examined included Hsp expressions, cell viability, total protein synthesis patterns, and accumulation of poly-ubiquitinated proteins. We also compared the mRNA expression profiles and kinetics, in the two cell lines exposed to the two stresses, using microarray analysis. In contrast to RIF-1 cells, TR cells resist heat shock caused changes in cell viability and whole-cell protein synthesis. The patterns of total cellular protein synthesis and accumulation of poly-ubiquitinated proteins in the two cell lines were distinct, depending on the stress and the cell line. Microarray analysis revealed that the gene expression pattern of TR cells was faster and more transient than that of RIF-1 cells, in response to heat shock, while both RIF-1 and TR cells showed similar kinetics of mRNA expression in response to MG132. We also found that 2,208 genes were up-regulated more than 2 fold and could sort them into three groups: 1) genes regulated by both heat shock and MG132, (e.g. chaperones); 2) those regulated only by heat shock (e.g. DNA binding proteins including histones); and 3) those regulated only by MG132 (e.g. innate immunity and defense related molecules). This study shows that heat shock and MG132 share some aspects of HSR signaling pathway, at the same time, inducing distinct stress response signaling pathways, triggered by distinct abnormal proteins

    Concurrent invasions of European starlings in Australia and North America reveal population-specific differentiation in shared genomic regions.

    Get PDF
    A species' success during the invasion of new areas hinges on an interplay between the demographic processes common to invasions and the specific ecological context of the novel environment. Evolutionary genetic studies of invasive species can investigate how genetic bottlenecks and ecological conditions shape genetic variation in invasions, and our study pairs two invasive populations that are hypothesized to be from the same source population to compare how each population evolved during and after introduction. Invasive European starlings (Sturnus vulgaris) established populations in both Australia and North America in the 19th century. Here, we compare whole-genome sequences among native and independently introduced European starling populations to determine how demographic processes interact with rapid evolution to generate similar genetic patterns in these recent and replicated invasions. Demographic models indicate that both invasive populations experienced genetic bottlenecks as expected based on invasion history, and we find that specific genomic regions have differentiated even on this short evolutionary timescale. Despite genetic bottlenecks, we suggest that genetic drift alone cannot explain differentiation in at least two of these regions. The demographic boom intrinsic to many invasions as well as potential inversions may have led to high population-specific differentiation, although the patterns of genetic variation are also consistent with the hypothesis that this infamous and highly mobile invader adapted to novel selection (e.g., extrinsic factors). We use targeted sampling of replicated invasions to identify and evaluate support for multiple, interacting evolutionary mechanisms that lead to differentiation during the invasion process

    Influence of offshore oil and gas structures on seascape ecological connectivity.

    Get PDF
    Offshore platforms, subsea pipelines, wells and related fixed structures supporting the oil and gas (O&G) industry are prevalent in oceans across the globe, with many approaching the end of their operational life and requiring decommissioning. Although structures can possess high ecological diversity and productivity, information on how they interact with broader ecological processes remains unclear. Here, we review the current state of knowledge on the role of O&G infrastructure in maintaining, altering or enhancing ecological connectivity with natural marine habitats. There is a paucity of studies on the subject with only 33 papers specifically targeting connectivity and O&G structures, although other studies provide important related information. Evidence for O&G structures facilitating vertical and horizontal seascape connectivity exists for larvae and mobile adult invertebrates, fish and megafauna; including threatened and commercially important species. The degree to which these structures represent a beneficial or detrimental net impact remains unclear, is complex and ultimately needs more research to determine the extent to which natural connectivity networks are conserved, enhanced or disrupted. We discuss the potential impacts of different decommissioning approaches on seascape connectivity and identify, through expert elicitation, critical knowledge gaps that, if addressed, may further inform decision making for the life cycle of O&G infrastructure, with relevance for other industries (e.g. renewables). The most highly ranked critical knowledge gap was a need to understand how O&G structures modify and influence the movement patterns of mobile species and dispersal stages of sessile marine species. Understanding how different decommissioning options affect species survival and movement was also highly ranked, as was understanding the extent to which O&G structures contribute to extending species distributions by providing rest stops, foraging habitat, and stepping stones. These questions could be addressed with further dedicated studies of animal movement in relation to structures using telemetry, molecular techniques and movement models. Our review and these priority questions provide a roadmap for advancing research needed to support evidence-based decision making for decommissioning O&G infrastructure

    Plover parents care more for young of the opposite sex

    Full text link
    Within some socially monogamous species, the relative contribution of care provided by each parent varies substantially, from uniparental to equitable biparental care. The provision of care is influenced by its costs and benefits, which may differ between parents (leading to inter-parental &ldquo;conflict&rdquo;) and are expected to change in relation to the needs of young (which vary with age) and potentially to traits such as their sex. If the fitness benefits to parents differ with the sex of offspring, parents may adjust their investment in young of different sexes to optimize their own fitness. We radio-tracked 42 Red-capped Plover Charadrius ruficapillus broods and found that, at least diurnally, females cared for the brood for the first half of brood-rearing, while gradually reducing care. Males contributed little diurnal care early in brood-rearing, then increased care, taking over from females as young approached independence. The sex-ratio of the brood influenced the division of care between parents; male parents attended the brood more when there were greater proportions of female chicks, whereas female parents attended the brood more when there were a greater proportion of male chicks. This is apparently the first recorded case in a precocial bird where each parents&rsquo; investment in brood care is influenced by the brood sex-ratio. Our results defy unambiguous explanation

    An assessment of the seascape genetic structure and hydrodynamic connectivity for subtropical seagrass restoration

    No full text
    Seagrass ecosystems have suffered significant declines globally and focus is shifting to restoration efforts. A key component to successful restoration is an understanding of the genetic factors potentially influencing restoration success. This includes understanding levels of connectivity between restoration locations and neighboring seagrass populations that promote natural recovery (source and sink populations), the identification of potential donor populations, and assessment of genetic diversity of restored meadows and material used for restoration. In this study, we carry out genetic surveys of 352 individuals from 13 populations using 11 polymorphic microsatellite loci to inform seagrass restoration activities by: (1) understanding levels of genetic and genotypic diversity within meadows; and (2) understanding genetic structure and patterns of connectivity among these meadows to determine which source sites may be most appropriate to assist recovery of three restoration sites. The study identified high genotypic diversity within the locations analyzed from the Port of Gladstone and Rodd's Bay region, indicating sexual reproduction is important in maintaining populations. Overall, we detected significant genetic structuring among sites with the Bayesian structure analysis identifying genetic clusters that largely conformed to a northern, central, and southern region. This suggests limited gene flow between regions, although there does appear to be some connectivity within regions. The hydrodynamic models showed that seeds were largely locally retained, while fragments were more widely dispersed. Limited gene flow between regions suggests donor material for restoration should be sourced locally where possible

    Development of twenty-three novel microsatellite markers for the seagrass, Zostera muelleri from Australia

    No full text
    Seagrasses are one of the most productive and economically important habitats in the coastal zone, but they are disappearing at an alarming rate, with more than half the world’s seagrass area lost since the 1990s. They now face serious threat from climate change, and there is much current speculation over whether they will survive the coming decades. The future of seagrasses depends on their ability to recover and adapt to environmental change—i.e. their ‘resilience’. Key to this, is understanding the role that genetic diversity plays in the resilience of this highly clonal group of species. To investigate population structure, genetic diversity, mating system (sexual versus asexual reproduction) and patterns of connectivity, we isolated and characterised 23 microsatellite loci using next generation sequencing for the Australian seagrass species, Zostera muelleri (syn. Z. capricorni), which is regarded as a globally significant congeneric species. Loci were tested for levels of variation based on eight individuals sampled from Lake Macquarie, New South Wales, Australia. We detected high to moderate levels of genetic variation across most loci with a mean allelic richness of 3.64 and unbiased expected hetrozygosity of 0.562. We found no evidence for linkage disequilibrium between any loci and only three loci (ZosNSW25, ZosNSW2, and ZosNSW47) showed significant deviations from Hardy–Weinberg expectations. All individuals displayed a unique multi-locus genotype and the combined probability of identity across all loci was low (PID = 1.87 9 10-12) indicating a high level of power in detecting unique genotypes. These 23 markers will provide an important tool for future population genetic assessments in this important keystone species.Craig D.H. Sherman, Annalise M. Stanley, Michael J. Keough, Michael G. Gardner and Peter I. Macreadi
    corecore