5 research outputs found

    Pharmaceutical pollution of the world's rivers

    Get PDF
    Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world's rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals

    Árangur aðgerða til að berjast gegn ólöglegum og óábyrgum (IUU) fiskveiðum í Líberíu

    No full text
    Illegal, Unreported and Unregulated (IUU) fishing continues to attract global attention due to its ability to undermine the development of coastal nations, degrade the marine ecosystems and destabilize the ability of the environment to recover from exploitations. Developing nations, especially in Africa, are the most vulnerable due the lack of adequate management tools and mechanisms to avert and discourage IUU fishing. The devastation caused by IUU fishing in this part of the world is most alarming due to the dependency rate of coastal nations to fisheries for livelihood and nutrition intake. Liberia being a developing coastal nation continues to be affected by varying forms of IUU fishing. Majority of the population live on the coast and rely heavily on these resources, especially as fish provide a cheaper means for animal protein. This study provides an assessment of the effectiveness of institutionalized structures employed combat IUU fishing. The study investigates the effectiveness of policies to demarcate zones for fishing by vessel types by comparing the catch size of Artisanal and industrial fishing before and after the structures and policies went into effect. The data shows a huge difference in catch size before 2010, favoring the industrial fishers. After 2010, the advantage is reversed and there was a spike in artisanal catch and a steep decline in the industrial fishing. This study also provides an MSY-catch analysis to determine by how much IUU affects the stock size. It is seen that while the revenue generation by the fisheries sector is indeed affected by IUU fishing, the proportion of catch to stock is extremely low and has been near constant for almost two decades, and allows for the conclusion that increase in effort, albeit to an acceptable amount, is key to increasing the contribution of the fisheries sector to the national GDP of Liberia. A review of the COBECOS project is discussed and possible applications of the model to Liberia is discussed and recommended

    Pharmaceutical pollution of the world's rivers

    No full text
    Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world's rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals.N

    Pharmaceutical pollution of the world's rivers

    No full text
    Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world's rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals
    corecore