765 research outputs found

    Contactless inductive flow tomography

    Full text link
    The three-dimensional velocity field of a propeller driven liquid metal flow is reconstructed by a contactless inductive flow tomography (CIFT). The underlying theory is presented within the framework of an integral equation system that governs the magnetic field distribution in a moving electrically conducting fluid. For small magnetic Reynolds numbers this integral equation system can be cast into a linear inverse problem for the determination of the velocity field from externally measured magnetic fields. A robust reconstruction of the large scale velocity field is already achieved by applying the external magnetic field alternately in two orthogonal directions and measuring the corresponding sets of induced magnetic fields. Kelvin's theorem is exploited to regularize the resulting velocity field by using the kinetic energy of the flow as a regularizing functional. The results of the new technique are shown to be in satisfactory agreement with ultrasonic measurements.Comment: 9 Figures; to appear in Phys. Rev

    Synchrotron x-ray measurement and finite element analysis of residual strain in TIG welded aluminium alloy 2024

    Get PDF
    Residual strains have been measured in a tungsten inert gas (TIG) butt-welded 2024 aluminum alloy plate using synchrotron X-ray diffraction. Novel two-dimensional strain maps spanning the entire plate reveal steep gradients in residual stress and provide detailed validation data for finite element (FE) analysis. Two variants of a FE model have been used to predict the residual strain distributions, incorporating different levels of plate constraint. The model uses decoupled thermal and elastic- plastic mechanical analyses and successfully predicts the longitudinal and transverse residual strain field over the entire weld. For butt weld geometries, the degree of transverse constraint is shown to be a significant boundary condition, compared to simpler bead-on-plate analyses. The importance of transverse residual strains for detailed model validation is highlighted, together with the need for care in selecting the location for line scans. The residual stress is largest in the heat-affected zone (HAZ), being equal to the local postweld yield stress, though the strength increases subsequently by natural aging. In addition, a halving of the diffraction line width has been observed local to the weld, and this correlates with the microstructural changes in the region

    Large-wavelength instabilities in free-surface Hartmann flow at low magnetic Prandtl numbers

    Full text link
    We study the linear stability of the flow of a viscous electrically conducting capillary fluid on a planar fixed plate in the presence of gravity and a uniform magnetic field. We first confirm that the Squire transformation for MHD is compatible with the stress and insulating boundary conditions at the free surface, but argue that unless the flow is driven at fixed Galilei and capillary numbers, the critical mode is not necessarily two-dimensional. We then investigate numerically how a flow-normal magnetic field, and the associated Hartmann steady state, affect the soft and hard instability modes of free surface flow, working in the low magnetic Prandtl number regime of laboratory fluids. Because it is a critical layer instability, the hard mode is found to exhibit similar behaviour to the even unstable mode in channel Hartmann flow, in terms of both the weak influence of Pm on its neutral stability curve, and the dependence of its critical Reynolds number Re_c on the Hartmann number Ha. In contrast, the structure of the soft mode's growth rate contours in the (Re, alpha) plane, where alpha is the wavenumber, differs markedly between problems with small, but nonzero, Pm, and their counterparts in the inductionless limit. As derived from large wavelength approximations, and confirmed numerically, the soft mode's critical Reynolds number grows exponentially with Ha in inductionless problems. However, when Pm is nonzero the Lorentz force originating from the steady state current leads to a modification of Re_c(Ha) to either a sublinearly increasing, or decreasing function of Ha, respectively for problems with insulating and conducting walls. In the former, we also observe pairs of Alfven waves, the upstream propagating wave undergoing an instability at large Alfven numbers.Comment: 58 pages, 16 figure

    Constrained flow around a magnetic obstacle

    Full text link
    Many practical applications exploit an external local magnetic field -- magnetic obstacle -- as an essential part of their constructions. Recently, it has been demonstrated that the flow of an electrically conducting fluid influenced by an external field can show several kinds of recirculation. The present paper reports a 3D numerical study whose some results are compared with an experiment about such a flow in a rectangular duct.Comment: accepted to JFM, 26 pages, 14 figure

    Modelling and visualisation of material flow in friction stir spot welding

    Get PDF
    The material flow in friction stir spot welding of aluminium to both aluminium and steel has been investigated, using pinless tools in a lap joint geometry. The flow behaviour was revealed experimentally using dissimilar Al alloys of similar strength. The effect on the material flow of tool surface features, welding conditions (rotation speed, plunge depth, dwell time), and the surface state of the steel sheet (un-coated or galvanized) have been systematically studied. A novel kinematic flow model is presented, which successfully predicts the observed layering of the dissimilar Al alloys under a range of conditions. The model and the experimental observations provide a consistent interpretation of the stick-slip conditions at the tool-workpiece interface, addressing an elusive and long-standing issue in the modelling of heat generation in friction stir processing.The authors wish to thank the EPSRC for funding this research through the following grants: Friction Joining – Low Energy Manufacturing for Hybrid Structures in Fuel Efficient Transport Applications (EP/G022402/1 and EP/G022674/1); and LATEST2, Light Alloys Towards Environmentally Sustainable Transport (EP/H020047/1).This is the author accepted manuscript. The final version is available from Elsevier at http://dx.doi.org/10.1016/j.jmatprotec.2015.06.02

    Measurement and control systems for an imaging electromagnetic flow meter

    Get PDF
    Electromagnetic flow metres based on the principles of Faraday's laws of induction have been used successfully in many industries. The conventional electromagnetic flow metre can measure the mean liquid velocity in axisymmetric single phase flows. However, in order to achieve velocity profile measurements in single phase flows with non-uniform velocity profiles, a novel imaging electromagnetic flow metre (IEF) has been developed which is described in this paper. The novel electromagnetic flow metre which is based on the ‘weight value’ theory to reconstruct velocity profiles is interfaced with a ‘Microrobotics VM1’ microcontroller as a stand-alone unit. The work undertaken in the paper demonstrates that an imaging electromagnetic flow metre for liquid velocity profile measurement is an instrument that is highly suited for control via a microcontroller
    • 

    corecore