57 research outputs found

    Cancer targeted gene therapy of BikDD inhibits orthotopic lung cancer growth and improves long-term survival

    Get PDF
    [[abstract]]Lung cancer is a leading cause of cancer death due to the high incidence of metastasis; therefore, novel and effective treatments are urgently needed. A current strategy is cancer-specific targeted gene therapy. Although many identified that cancer-specific promoters are highly specific, they tend to have low activity compared with the ubiquitous cytomegalovirus (CMV) promoter, limiting their application. We developed a targeted gene therapy expression system for lung cancer that is highly specific with strong activity. Our expression vector uses the survivin promoter, highly expressed in many cancers but not normal adult tissues. We enhanced the survivin promoter activity comparable to the CMV promoter in lung cancer cell lines using an established platform technology, whereas the survivin promoter remained weak in normal cells. In mouse models, the transgene was specifically expressed in the lung tumor tissue, compared with the CMV promoter that was expressed in both normal and tumor tissues. In addition, the therapeutic gene BikDD, a mutant form of pro-apoptotic Bcl2 interacting killer, induced cell killing in vitro, and inhibited cell growth and prolonged mouse survival in vivo. Importantly, there was virtually no toxicity when BikDD was expressed with our expression system. Thus, the current report provides a therapeutic efficacy and safe strategy worthy of development in clinical trials treating lung cancer

    Errors in CGAP xProfiler and cDNA DGED: the importance of library parsing and gene selection algorithms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Cancer Genome Anatomy Project (CGAP) xProfiler and cDNA Digital Gene Expression Displayer (DGED) have been made available to the scientific community over a decade ago and since then were used widely to find genes which are differentially expressed between cancer and normal tissues. The tissue types are usually chosen according to the ontology hierarchy developed by NCBI. The xProfiler uses an internally available flat file database to determine the presence or absence of genes in the chosen libraries, while cDNA DGED uses the publicly available UniGene Expression and Gene relational databases to count the sequences found for each gene in the presented libraries.</p> <p>Results</p> <p>We discovered that the CGAP approach often includes libraries from dependent or irrelevant tissues (one third of libraries were incorrect on average, with some tissue searches no correct libraries being selected at all). We also discovered that the CGAP approach reported genes from outside the selected libraries and may omit genes found within the libraries. Other errors include the incorrect estimation of the significance values and inaccurate settings for the library size cut-off values. We advocated a revised approach to finding libraries associated with tissues. In doing so, libraries from dependent or irrelevant tissues do not get included in the final library pool. We also revised the method for determining the presence or absence of a gene by searching the UniGene relational database, revised calculation of statistical significance and sorted the library cut-off filter.</p> <p>Conclusion</p> <p>Our results justify re-evaluation of all previously reported results where NCBI CGAP expression data and tools were used.</p

    Minicircle-oriP-IFNγ: A Novel Targeted Gene Therapeutic System for EBV Positive Human Nasopharyngeal Carcinoma

    Get PDF
    ) in which the transgene expression was under the transcriptional regulation of oriP promoter.. Immunohistochemistry was used to detect the expression and the activity of the IFNγ in tumor sections. Our results demonstrated that mc-oriP vectors mediated comparable gene expression and anti-proliferative effect in the EBV-positive NPC cell line C666-1 compared to mc-CMV vectors. Furthermore, mc-oriP vectors exhibited much lower killing effects on EBV-negative cell lines compared to mc-CMV vectors. The targeted expression of mc-oriP vectors was inhibited by EBNA1-siRNA in C666-1. This selective expression was corroborated in EBV-positive and -negative tumor models. as a safe and highly effective targeted gene therapeutic system for the treatment of EBV positive NPC

    Limits on active to sterile neutrino oscillations from disappearance searches in the MINOS, Daya Bay, and bugey-3 experiments

    Get PDF
    Searches for a light sterile neutrino have been performed independently by the MINOS and the Daya Bay experiments using the muon (anti)neutrino and electron antineutrino disappearance channels, respectively. In this Letter, results from both experiments are combined with those from the Bugey-3 reactor neutrino experiment to constrain oscillations into light sterile neutrinos. The three experiments are sensitive to complementary regions of parameter space, enabling the combined analysis to probe regions allowed by the Liquid Scintillator Neutrino Detector (LSND) and MiniBooNE experiments in a minimally extended four-neutrino flavor framework. Stringent limits on sin^2 2θμe are set over 6 orders of magnitude in the sterile mass-squared splitting Δm^2 41. The sterile-neutrino mixing phase space allowed by the LSND and MiniBooNE experiments is excluded for Δm^2 41 < 0.8 eV^2 at 95% CLs

    Role of biomechanics in the understanding of normal, injured, and healing ligaments and tendons

    Get PDF
    Ligaments and tendons are soft connective tissues which serve essential roles for biomechanical function of the musculoskeletal system by stabilizing and guiding the motion of diarthrodial joints. Nevertheless, these tissues are frequently injured due to repetition and overuse as well as quick cutting motions that involve acceleration and deceleration. These injuries often upset this balance between mobility and stability of the joint which causes damage to other soft tissues manifested as pain and other morbidity, such as osteoarthritis

    Targeted endostatin-cytosine deaminase fusion gene therapy plus 5-fluorocytosine suppresses ovarian tumor growth

    No full text
    [[abstract]]There are currently no effective therapies for cancer patients with advanced ovarian cancer, therefore developing an efficient and safe strategy is urgent. To ensure cancer-specific targeting, efficient delivery, and efficacy, we developed an ovarian cancer-specific construct (Survivin-VISA-hEndoyCD) composed of the cancer specific promoter survivin in a transgene amplification vector (VISA; VP16-GAL4-WPRE integrated systemic amplifier) to express a secreted human endostatin-yeast cytosine deaminase fusion protein (hEndoyCD) for advanced ovarian cancer treatment. hEndoyCD contains an endostatin domain that has tumor-targeting ability for anti-angiogenesis and a cytosine deaminase domain that converts the prodrug 5-fluorocytosine (5-FC) into the chemotherapeutic drug, 5-fluorouracil. Survivin-VISA-hEndoyCD was found to be highly specific, selectively express secreted hEndoyCD from ovarian cancer cells, and induce cancer-cell killing in vitro and in vivo in the presence of 5-FC without affecting normal cells. In addition, Survivin-VISA-hEndoyCD plus 5-FC showed strong synergistic effects in combination with cisplatin in ovarian cancer cell lines. Intraperitoneal (i.p.) treatment with Survivin-VISA-hEndoyCD coupled with liposome attenuated tumor growth and prolonged survival in mice bearing advanced ovarian tumors. Importantly, there was virtually no severe toxicity when hEndoyCD is expressed by Survivin-VISA plus 5-FC compared with CMV plus 5-FC. Thus, the current study demonstrates an effective cancer-targeted gene therapy that is worthy of development in clinical trials for treating advanced ovarian cancer
    corecore