2,222 research outputs found

    Pulsed laser deposition for growth of high quality epitaxial garnet films for low threshold waveguide lasers

    No full text
    Pulsed laser deposition (PLD) is a mature technique capable of producing extremely high quality epitaxial single crystalline films. We have grown Nd:doped garnet films of GGG (Gd The talk will summarise our progress using conventional (single beam) PLD in thin-film and waveguide growth, using both nanosecond and femtosecond lasers, and also introduce our new directions in tri-beam PLD (three targets, three lasers) for growth of some interesting, complex and perhaps impossible structures, such as Gaussian doping, internal voids and even helically doped structures

    Primary culture and mRNA analysis of human ovarian cells

    Get PDF
    Established cell lines are invaluable for studying cell and molecular biological questions. A variety of human ovarian cancer (OC) cell lines exist, however, most have acquired significant genetic alterations from their cells of origin, including deletion of important cell cycle regulatory genes. In order to analyze signaling events related to cell cycle control in human OC, we have modified existing protocols for isolating and culturing OC cells from patient ascites fluid and normal ovarian surface epithelial (OSE) cells from benign ovarian tissue sections. These cells maintain an epithelial phenotype and can be manipulated experimentally for several passages before cellular senescence. An example using TGFb1 treatment of OC cells to examine signaling and target gene activation is presented

    The appendage role of insect disco genes and possible implications on the evolution of the maggot larval form

    Get PDF
    AbstractThough initially identified as necessary for neural migration, Disconnected and its partially redundant paralog, Disco-related, are required for proper head segment identity during Drosophila embryogenesis. Here, we present evidence that these genes are also required for proper ventral appendage development during development of the adult fly, where they specify medial to distal appendage development. Cells lacking the disco genes cannot contribute to the medial and distal portions of ventral appendages. Further, ectopic disco transforms dorsal appendages toward ventral fates; in wing discs, the medial and distal leg development pathways are activated. Interestingly, this appendage role is conserved in the red flour beetle, Tribolium (where legs develop during embryogenesis), yet in the beetle we found no evidence for a head segmentation role. The lack of an embryonic head specification role in Tribolium could be interpreted as a loss of the head segmentation function in Tribolium or gain of this function during evolution of flies. However, we suggest an alternative explanation. We propose that the disco genes always function as appendage factors, but their appendage nature is masked during Drosophila embryogenesis due to the reduction of limb fields in the maggot style Drosophila larva

    Testing for Network and Spatial Autocorrelation

    Full text link
    Testing for dependence has been a well-established component of spatial statistical analyses for decades. In particular, several popular test statistics have desirable properties for testing for the presence of spatial autocorrelation in continuous variables. In this paper we propose two contributions to the literature on tests for autocorrelation. First, we propose a new test for autocorrelation in categorical variables. While some methods currently exist for assessing spatial autocorrelation in categorical variables, the most popular method is unwieldy, somewhat ad hoc, and fails to provide grounds for a single omnibus test. Second, we discuss the importance of testing for autocorrelation in network, rather than spatial, data, motivated by applications in social network data. We demonstrate that existing tests for autocorrelation in spatial data for continuous variables and our new test for categorical variables can both be used in the network setting

    The common p.R114W <i>HNF4A </i>mutation causes a distinct clinical subtype of monogenic diabetes

    Get PDF
    HNF4A mutations cause increased birth weight, transient neonatal hypoglycaemia and maturity onset diabetes of the young (MODY). The most frequently reported HNF4A mutation is p.R114W (previously p.R127W) but functional studies have shown inconsistent results, there is lack of co-segregation in some pedigrees and an unexpectedly high frequency in public variant databases. We confirm that p.R114W is a pathogenic mutation with an odds ratio of 30.4 (95% CI: 9.79 - 125, P=2x10(-21)) for diabetes in our MODY cohort compared to controls. p.R114W heterozygotes do not have the increased birth weight of patients with other HNF4A mutations (3476g vs. 4147g, P=0.0004) and fewer patients responded to sulfonylurea treatment (48% vs. 73%, P=0.038). p.R114W has reduced penetrance; only 54% of heterozygotes developed diabetes by age 30 compared to 71% for other HNF4A mutations. We re-define p.R114W as a pathogenic mutation causing a distinct clinical subtype of HNF4A MODY with reduced penetrance, reduced sensitivity to sulfonylurea treatment and no effect on birth weight. This has implications for diabetes treatment, management of pregnancy and predictive testing of at-risk relatives. The increasing availability of large-scale sequence data is likely to reveal similar examples of rare, low-penetrance MODY mutations.</p

    Connection between the Accretion Disk and Jet in the Radio Galaxy 3C 111

    Full text link
    We present the results of extensive multi-frequency monitoring of the radio galaxy 3C 111 between 2004 and 2010 at X-ray (2.4--10 keV), optical (R band), and radio (14.5, 37, and 230 GHz) wave bands, as well as multi-epoch imaging with the Very Long Baseline Array (VLBA) at 43 GHz. Over the six years of observation, significant dips in the X-ray light curve are followed by ejections of bright superluminal knots in the VLBA images. This shows a clear connection between the radiative state near the black hole, where the X-rays are produced, and events in the jet. The X-ray continuum flux and Fe line intensity are strongly correlated, with a time lag shorter than 90 days and consistent with zero. This implies that the Fe line is generated within 90 light-days of the source of the X-ray continuum. The power spectral density function of X-ray variations contains a break, with steeper slope at shorter timescales. The break timescale of 13 (+12,-6) days is commensurate with scaling according to the mass of the central black hole based on observations of Seyfert galaxies and black hole X-ray binaries (BHXRBs). The data are consistent with the standard paradigm, in which the X-rays are predominantly produced by inverse Compton scattering of thermal optical/UV seed photons from the accretion disk by a distribution of hot electrons --- the corona --- situated near the disk. Most of the optical emission is generated in the accretion disk due to reprocessing of the X-ray emission. The relationships that we have uncovered between the accretion disk and the jet in 3C 111, as well as in the FR I radio galaxy 3C 120 in a previous paper, support the paradigm that active galactic nuclei and Galactic BHXRBs are fundamentally similar, with characteristic time and size scales proportional to the mass of the central black holeComment: Accepted for publication in ApJ. 18 pages, 17 figures, 11 tables (full machine readable data-tables online in ApJ website
    • …
    corecore