7,834 research outputs found
Electricity from photovoltaic solar cells: Flat-Plate Solar Array Project final report. Volume VI: Engineering sciences and reliability
The Flat-Plate Solar Array (FSA) Project, funded by the U.S. Government and managed by the Jet Propulsion Laboratory, was formed in 1975 to develop the module/array technology needed to attain widespread terrestrial use of photovoltaics by 1985. To accomplish this, the FSA Project established and managed an Industry, University, and Federal Government Team to perform the needed research and development.
This volume of the series of final reports documenting the FSA Project deals with the Project's activities directed at developing the engineering technology base required to achieve modules that meet the functional, safety and reliability requirements of large-scale terrestrial photovoltaic systems applications. These activities included: (1) development of functional, safety, and reliability requirements for such applications; (2) development of the engineering analytical approaches, test techniques, and design solutions required to meet the requirements; (3) synthesis and procurement of candidate designs for test and evaluation; and (4) performance of extensive testing, evaluation, and failure analysis to define design shortfalls and, thus, areas requiring additional research and development.
During the life of the FSA Project, these activities were known by and included a variety of evolving organizational titles: Design and Test, Large-Scale Procurements, Engineering, Engineering Sciences, Operations, Module Performance and Failure Analysis, and at the end of the Project, Reliability and Engineering Sciences.
This volume provides both a summary of the approach and technical outcome of these activities and provides a complete Bibliography (Appendix A) of the published documentation covering the detailed accomplishments and technologies developed
Observation of a pressure-induced transition from interlayer ferromagnetism to intralayer antiferromagnetism in Sr4Ru3O10
Sr4Ru3O10 is a Ruddlesden-Popper compound with triple Ru-O perovskite layers
separated by Sr-O alkali layers. This compound presents a rare coexistence of
interlayer (c-axis) ferromagnetism and intralayer (basal-plane) metamagnetism
at ambient pressure. Here we report the observation of pressure-induced,
intralayer itinerant antiferromagnetism arising from the interlayer
ferromagnetism. The application of modest hydrostatic pressure generates an
anisotropy that causes a flattening and a tilting of RuO6 octahedra. All
magnetic and transport results from this study indicate these lattice
distortions diminish the c-axis ferromagnetism and basal-plane metamagnetism,
and induce a basal-plane antiferromagnetic state. The unusually large
magnetoelastic coupling and pressure tunability of Sr4Ru3O10 makes it a unique
model system for studies of itinerant magnetism.Comment: 6 figure
Flat-plate solar array project. Volume 6: Engineering sciences and reliability
The Flat-Plate Solar Array (FSA) Project activities directed at developing the engineering technology base required to achieve modules that meet the functional, safety, and reliability requirements of large scale terrestrial photovoltaic systems applications are reported. These activities included: (1) development of functional, safety, and reliability requirements for such applications; (2) development of the engineering analytical approaches, test techniques, and design solutions required to meet the requirements; (3) synthesis and procurement of candidate designs for test and evaluation; and (4) performance of extensive testing, evaluation, and failure analysis of define design shortfalls and, thus, areas requiring additional research and development. A summary of the approach and technical outcome of these activities are provided along with a complete bibliography of the published documentation covering the detailed accomplishments and technologies developed
Non-Fermi liquid behavior of SrRuO_3 -- evidence from infrared conductivity
The reflectivity of the itinerant ferromagnet SrRuO_3 has been measured
between 50 and 25,000 cm-1 at temperatures ranging from 40 to 300 K, and used
to obtain conductivity, scattering rate, and effective mass as a function of
frequency and temperature. We find that at low temperatures the conductivity
falls unusually slowly as a function of frequency (proportional to
\omega^{-1/2}), and at high temperatures it even appears to increase as a
function of frequency in the far-infrared limit. The data suggest that the
charge dynamics of SrRuO_3 are substantially different from those of
Fermi-liquid metals.Comment: 4 pages, 3 postscript figure
Determinants of mental and physical health-related quality of life among patients hospitalized for suicidal behavior
The current study was interested in exploring the clinical factors related to mental and physical health-related quality of life among patients hospitalized for suicidal behavior. A multicenter cross-sectional study was designed to compare data obtained form 246 patients hospitalized for suicide behavior. Results suggest that mental health-related quality of life was negatively associated with hopelessness while physical health-related quality of life was negatively associated with age, medical disease and the number of previous suicide attempts and positively associated with employment. Findings are discussed in the context of theoretical evidence and clinical implications.Fil: Grendas, Leandro Nicolás. Consejo Nacional de Investigaciones CientÃficas y Técnicas; Argentina. Gobierno de la Ciudad de Buenos Aires. Hospital Dr. Braulio A. Moyano; Argentina. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Rodante, Demián. Universidad de Buenos Aires. Facultad de Medicina; Argentina. Gobierno de la Ciudad de Buenos Aires. Hospital Dr. Braulio A. Moyano; Argentina. Consejo Nacional de Investigaciones CientÃficas y Técnicas; ArgentinaFil: Rojas, Sasha. University of Arkansas for Medical Sciences; Estados UnidosFil: Puppo, Soledad. Universidad de Buenos Aires. Facultad de Medicina. Hospital de ClÃnicas General San MartÃn; ArgentinaFil: Vidjen, Patricia. Gobierno de la Ciudad de Buenos Aires. Hospital Municipal ; ArgentinaFil: Lado, Gisela. Gobierno de la Ciudad de Buenos Aires. Hospital Municipal ; ArgentinaFil: Portela, Alicia. Gobierno de la Ciudad de Buenos Aires. Hospital Municipal ; ArgentinaFil: Daray, Federico Manuel. Universidad de Buenos Aires. Facultad de Medicina; Argentina. Consejo Nacional de Investigaciones CientÃficas y Técnicas; Argentin
Temperature dependence of the primary electron transfer in photosynthetic reaction centers from Rhodobacter sphaeroides
The primary electron transfer (ET) in reaction centers (RC) of Rhodobacter sphaeroides is investigated as a function of temperature with femtosecond time resolution. For temperatures from 300 to 25 K the ET to the bacteriopheophytin is characterized by a biphasic time dependence. The two time constants of τ1=3.5±0.4 ps and τ2=1.2±0.3 ps at T=300 K decrease continously with temperature to values of τ1=1.4±0.3 ps and τ2=0.3±0.15 ps at 25 K. The experimental results indicate that the ET is not thermally activated and that the same ET mechanisms are active at room and low temperatures. All observations are readily rationalized by a two-step ET model with the monomeric bacteriochlorophyll as a real electron carrier
Direct single-molecule dynamic detection of chemical reactions.
Single-molecule detection can reveal time trajectories and reaction pathways of individual intermediates/transition states in chemical reactions and biological processes, which is of fundamental importance to elucidate their intrinsic mechanisms. We present a reliable, label-free single-molecule approach that allows us to directly explore the dynamic process of basic chemical reactions at the single-event level by using stable graphene-molecule single-molecule junctions. These junctions are constructed by covalently connecting a single molecule with a 9-fluorenone center to nanogapped graphene electrodes. For the first time, real-time single-molecule electrical measurements unambiguously show reproducible large-amplitude two-level fluctuations that are highly dependent on solvent environments in a nucleophilic addition reaction of hydroxylamine to a carbonyl group. Both theoretical simulations and ensemble experiments prove that this observation originates from the reversible transition between the reactant and a new intermediate state within a time scale of a few microseconds. These investigations open up a new route that is able to be immediately applied to probe fast single-molecule physics or biophysics with high time resolution, making an important contribution to broad fields beyond reaction chemistry
On the Application of Deformation Kinetics to Nonlinear Constitutive Relations at Higher Temperatures
A single phenomenological constitutive equation is derived theoretically from first principles and applied to aluminum, tin and lead. The theory is based on deformation kinetics of steady creep in which the fundamental mechanism is atomic transport over potential barriers whose conformation is distorted by the application of a stress field. The form of the functional dependence of barrier distortion and stress over the entire temperature range is found to be a sigmoidal curve which tends to straight lines of a unit slope in the small and high stress regions. With this form of barrier distortion, the constitutive equation prediction the steady creep behavior of aluminum, tin and lead over a wide range of temperature and stress
- …