53 research outputs found

    Characterization of anomalous Zeeman patterns in complex atomic spectra

    Full text link
    The modeling of complex atomic spectra is a difficult task, due to the huge number of levels and lines involved. In the presence of a magnetic field, the computation becomes even more difficult. The anomalous Zeeman pattern is a superposition of many absorption or emission profiles with different Zeeman relative strengths, shifts, widths, asymmetries and sharpnesses. We propose a statistical approach to study the effect of a magnetic field on the broadening of spectral lines and transition arrays in atomic spectra. In this model, the sigma and pi profiles are described using the moments of the Zeeman components, which depend on quantum numbers and Land\'{e} factors. A graphical calculation of these moments, together with a statistical modeling of Zeeman profiles as expansions in terms of Hermite polynomials are presented. It is shown that the procedure is more efficient, in terms of convergence and validity range, than the Taylor-series expansion in powers of the magnetic field which was suggested in the past. Finally, a simple approximate method to estimate the contribution of a magnetic field to the width of transition arrays is proposed. It relies on our recently published recursive technique for the numbering of LS-terms of an arbitrary configuration.Comment: submitted to Physical Review

    PTPN22 R620W minor allele is a genetic risk factor for giant cell arteritis

    Get PDF
    Published online 7 April 2016.Giant cell arteritis (GCA) is one of the commonest forms of vasculitis in the elderly, and may result in blindness and stroke. The pathogenesis of GCA is not understood, although environmental, infectious and genetic risk factors are implicated. One gene of interest is PTPN22, encoding lymphoid protein tyrosine phosphatase (Lyp), expressed exclusively in immune cells, which is proposed to be an 'archetypal non-HLA autoimmunity gene'. The minor allele of a functional PTPN22 single nucleotide polymorphism (rs2476601, R620W), which disrupts an interaction motif in the protein, was originally reported to be associated with biopsy-proven GCA in Spanish patients, with supporting data from three replicate Northern European studies. Recently, this observation was extended with additional patients and controls, and studies encompassing European, Scandinavian, UK and American patients. The aim of our study was to determine the association between PTPN22 rs2476601 (R620W) and biopsy-proven GCA in an Australian case cohort.Susan Lester, Alex W Hewitt, Carlee D Ruediger, Linda Bradbury, Elisabeth De Smit, Michael D Wiese, Rachel Black, Andrew Harrison, Graeme Jones, Geoffrey O Littlejohn, Tony R Merriman, Bain Shenstone, Malcolm D Smith, Maureen Rischmueller, Matthew A Brown, Catherine L Hil

    From Majorana theory of atomic autoionization to Feshbach resonances in high temperature superconductors

    Full text link
    The Ettore Majorana paper - Theory of incomplete P triplets- published in 1931, focuses on the role of selection rules for the non-radiative decay of two electron excitations in atomic spectra, involving the configuration interaction between discrete and continuum channels. This work is a key step for understanding the 1935 work of Ugo Fano on the asymmetric lineshape of two electron excitations and the 1958 Herman Feshbach paper on the shape resonances in nuclear scattering arising from configuration interaction between many different scattering channels. The Feshbach resonances are today of high scientific interest in many different fields and in particular for ultracold gases and high Tc superconductivity.Comment: 13 pages, 7 figures. Journal of Superconductivity and Novel Magnetism to be publishe
    corecore