107 research outputs found

    Global robust H∞ control for non-minimum-phase uncertain nonlinear systems without strict triangular structure

    Get PDF
    Dimirovski, Georgi M. (Dogus Author) -- 16th Triennial World Congress of International Federation of Automatic Control, IFAC 2005; Prague; Czech Republic; 3 July 2005 through 8 July 2005; Code 85501This paper deals with the robust H∞ control problem for a class of multi-input non-minimum-phase nonlinear systems with parameter uncertainty. A system of this class is assumed to be in a special interlaced form, which includes a strict triangular form as a special case. By using an extension of backstepping, nonlinear static-state feedback controllers are designed such that the closed-loop system is input-to-state stable with respect to the disturbance input and has the prescribed L2-gain from the disturbance input to the controlled output for all admissible parameter uncertainties.This work was supported by the NSF of China under Grant 60274009, by SRFDP under Grant 20020145007 and by NSF of Liaoning Province under Grant 20032020

    Q-Switched 2 Micron Solid-State Lasers and Their Applications

    Get PDF
    In this chapter, we overview the Q-switched 2 μm solid-state laser development achieved in recent years, including flash- and diode-pumped solid-state lasers based on active and passive modulators. In summary, active Q-switching is still the first choice for obtaining large pulse energy at 2 μm currently, while passive Q-switching based on saturable absorbers (SAs), especially the newly emerging broadband low-dimension nanomaterial, is becoming promising approach in generating Q-switched 2 μm lasers specially with high repetition rate, although the output power, pulse duration, and pulse energy needs further enhancement. Besides, some important applications of 2 μm lasers, such as medicine, laser radar, and infrared directional interference, have also been introduced in brief

    Model-Free Large-Scale Cloth Spreading With Mobile Manipulation: Initial Feasibility Study

    Full text link
    Cloth manipulation is common in domestic and service tasks, and most studies use fixed-base manipulators to manipulate objects whose sizes are relatively small with respect to the manipulators' workspace, such as towels, shirts, and rags. In contrast, manipulation of large-scale cloth, such as bed making and tablecloth spreading, poses additional challenges of reachability and manipulation control. To address them, this paper presents a novel framework to spread large-scale cloth, with a single-arm mobile manipulator that can solve the reachability issue, for an initial feasibility study. On the manipulation control side, without modeling highly deformable cloth, a vision-based manipulation control scheme is applied and based on an online-update Jacobian matrix mapping from selected feature points to the end-effector motion. To coordinate the control of the manipulator and mobile platform, Behavior Trees (BTs) are used because of their modularity. Finally, experiments are conducted, including validation of the model-free manipulation control for cloth spreading in different conditions and the large-scale cloth spreading framework. The experimental results demonstrate the large-scale cloth spreading task feasibility with a single-arm mobile manipulator and the model-free deformation controller.Comment: 6 pages, 6 figures, submit to CASE202

    Saturable Absorption and Modulation Characteristics of Laser with Graphene Oxide Spin Coated on ITO Substrate

    Get PDF
    The graphene oxide (GO) thin film has been obtained by mixture of GO spin coated on substrate of indium tin oxide (ITO). The experiment has shown that continuous-wave laser is modulated when the graphene oxide saturable absorber (GO-SA) is employed in the 1064 nm laser cavity. The shortest pulse width is 108 ns at the pump power of 5.04 W. Other output laser characteristics, such as the threshold pump power, the repetition rate, and the peak power, have also been measured. The results have demonstrated that graphene oxide is an available saturable absorber for 1064 nm passive Q-switching laser

    Skeletal loading regulates breast cancer-associated osteolysis in a loading intensity-dependent fashion

    Get PDF
    Osteocytes are mechanosensitive bone cells, but little is known about their effects on tumor cells in response to mechanical stimulation. We treated breast cancer cells with osteocyte-derived conditioned medium (CM) and fluid flow-treated conditioned medium (FFCM) with 0.25 Pa and 1 Pa shear stress. Notably, CM and FFCM at 0.25 Pa induced the mesenchymal-to-epithelial transition (MET), but FFCM at 1 Pa induced the epithelial-to-mesenchymal transition (EMT). This suggested that the effects of fluid flow on conditioned media depend on flow intensity. Fluorescence resonance energy transfer (FRET)-based evaluation of Src activity and vinculin molecular force showed that osteopontin was involved in EMT and MET switching. A mouse model of tumor-induced osteolysis was tested using dynamic tibia loadings of 1, 2, and 5 N. The low 1 N loading suppressed tumor-induced osteolysis, but this beneficial effect was lost and reversed with loads at 2 and 5 N, respectively. Changing the loading intensities in vivo also led to changes in serum TGFβ levels and the composition of tumor-associated volatile organic compounds in the urine. Collectively, this study demonstrated the critical role of intensity-dependent mechanotransduction and osteopontin in tumor-osteocyte communication, indicating that a biophysical factor can tangibly alter the behaviors of tumor cells in the bone microenvironment

    Metagenomic Analysis of Bacteria, Fungi, Bacteriophages, and Helminths in the Gut of Giant Pandas

    Get PDF
    To obtain full details of gut microbiota, including bacteria, fungi, bacteriophages, and helminths, in giant pandas (GPs), we created a comprehensive microbial genome database and used metagenomic sequences to align against the database. We delineated a detailed and different gut microbiota structures of GPs. A total of 680 species of bacteria, 198 fungi, 185 bacteriophages, and 45 helminths were found. Compared with 16S rRNA sequencing, the dominant bacterium phyla not only included Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria but also Cyanobacteria and other eight phyla. Aside from Ascomycota, Basidiomycota, and Glomeromycota, Mucoromycota, and Microsporidia were the dominant fungi phyla. The bacteriophages were predominantly dsDNA Myoviridae, Siphoviridae, Podoviridae, ssDNA Inoviridae, and Microviridae. For helminths, phylum Nematoda was the dominant. In addition to previously described parasites, another 44 species of helminths were found in GPs. Also, differences in abundance of microbiota were found between the captive, semiwild, and wild GPs. A total of 1,739 genes encoding cellulase, β-glucosidase, and cellulose β-1,4-cellobiosidase were responsible for the metabolism of cellulose, and 128,707 putative glycoside hydrolase genes were found in bacteria/fungi. Taken together, the results indicated not only bacteria but also fungi, bacteriophages, and helminths were diverse in gut of giant pandas, which provided basis for the further identification of role of gut microbiota. Besides, metagenomics revealed that the bacteria/fungi in gut of GPs harbor the ability of cellulose and hemicellulose degradation

    Mechanical tibial loading remotely suppresses brain tumors by dopamine-mediated downregulation of CCN4

    Get PDF
    Mechanical loading to the bone is known to be beneficial for bone homeostasis and for suppressing tumor-induced osteolysis in the loaded bone. However, whether loading to a weight-bearing hind limb can inhibit distant tumor growth in the brain is unknown. We examined the possibility of bone-to-brain mechanotransduction using a mouse model of a brain tumor by focusing on the response to Lrp5-mediated Wnt signaling and dopamine in tumor cells. The results revealed that loading the tibia with elevated levels of tyrosine hydroxylase, a rate-limiting enzyme in dopamine synthesis, markedly reduced the progression of the brain tumors. The simultaneous application of fluphenazine (FP), an antipsychotic dopamine modulator, enhanced tumor suppression. Dopamine and FP exerted antitumor effects through the dopamine receptors DRD1 and DRD2, respectively. Notably, dopamine downregulated Lrp5 via DRD1 in tumor cells. A cytokine array analysis revealed that the reduction in CCN4 was critical for loading-driven, dopamine-mediated tumor suppression. The silencing of Lrp5 reduced CCN4, and the administration of CCN4 elevated oncogenic genes such as MMP9, Runx2, and Snail. In summary, this study demonstrates that mechanical loading regulates dopaminergic signaling and remotely suppresses brain tumors by inhibiting the Lrp5-CCN4 axis via DRD1, indicating the possibility of developing an adjuvant bone-mediated loading therapy
    • …
    corecore