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Abstract: This paper deals with the robust H∞ control problem for a class of
multi-input non-minimum-phase nonlinear systems with parameter uncertainty. A
system of this class is assumed to be in a special interlaced form, which includes
a strict triangular form as a special case. By using an extension of backstepping,
nonlinear static-state feedback controllers are designed such that the closed-loop
system is input-to-state stable with respect to the disturbance input and has the
prescribed L2-gain from the disturbance input to the controlled output for all
admissible parameter uncertainties. Copyright c©2005 IFAC
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1. INTRODUCTION

H∞ control has become a powerful tool to solve
the robust stabilization and disturbance attenu-
ation problem and has been investigated heav-
ily. There are some approaches which have been
used to provide solutions to nonlinear H∞ con-
trol problem. One is based on the dissipativity
theory and differential games theory in (Basar
and Bernhard, 1991; Ball and Helton, 1989). The
other is based on the nonlinear version of classical
bounded real lemma in (Isidori and Astolfi, 1992;
Isidori, 1991; Van der Schaft, 2000). These results
involve solving Hamilton-Jacobi-Issacs equations
(HJIEs), whose nice feature is that they are par-
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allel to the results of linear H∞ control. However,
for the aforementioned results, the lack of effi-
cient numerical procedures for solving the HJIEs
is a formidable difficulty. This motivates some
attempts to look for methods which solve reduced-
order HJIEs or need not to solve any HJIEs. By
using ”normal form” and backstepping technique,
the H∞ control problem has been investigated
extensively. Results in (Isidori, 1996a; Marino, et
al., 1994; Guo, et al., 2000) deal with minimum-
phase systems and (Isidori, 1996b; Su, et al., 1999;
Lin, et al., 1999) provide results for non-minimum-
phase systems whose zero dynamics are divided
into stable parts and unstable but stabilizable
parts. Backstepping method has been extended
to investigate the H∞ control problem for sys-
tems with block-strict-triangular form (Xie and
Su, 1997), subject to parameter uncertainty (Xie
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and Su, 1997; Su, et al., 1999) and with time-delay
(Guo, et al., 2000).

Though backstepping play an important role in
nonlinear H∞ control problem, a significant re-
striction of the method is that it is only suitable to
the systems with inherent strict triangular form.

In this paper, we will extend the backstepping
technique to multi-input non-minimum-phase sys-
tems which are non-strict triangular form. Such a
system, which includes the strict triangular form
as a special case, consists of one autonomous sub-
system (we call it zero dynamics of the system)
and two single-input subsystems with special in-
terconnections. We allow the existence of not only
feedback but also feedforward interconnections
among the subsystems. Also, our zero dynamics
equation is allowed to contain the states of all
subsystems, which is obviously much more general
than those in papers mentioned above, where zero
dynamics equation can only contain the states
of the first subsystem. Such special interconnec-
tions in this paper make it possible to construct
the robust H∞ controllers using an extension of
backstepping. The main design procedure is as
follows. First, using backstepping technique, we
design the robust H∞ controller for the first sub-
system. Then, by analyzing the resulting closed-
loop subsystem through the interconnection to the
next subsystem, another augmented subsystem
is obtained, which is also in a strict triangular
form. Finally, the second robust H∞ controller
can be designed by backstepping. The results of
this paper can also be viewed as a generalization
of the robust stabilization result in (Liu, et al.,
1999), where no H∞ control is considered.

2. PRELIMINARIES

This paper considers a nonlinear uncertain system
with two inputs, which is described by

η̇ = f1(η, ξ1, θ) + p0(η, ξ1, θ)w + f2(η, ξ, u, ζ1, θ)ζ1,

ξ̇1 = ξ2 + µ1(η, ξ1, θ) + p1(η, ξ1, θ)w
+ ϕ1(η, ξ, u, ζ1, θ)ζ1,

. . .

ξ̇m−1 = ξm + µm−1(η, ξ1, . . . , ξm−1, θ)
+ pm−1(η, ξ1, . . . , ξm−1, θ)w
+ ϕm−1(η, ξ, u, ζ1, θ)ζ1,

ξ̇m = u + µm(η, ξ1, . . . , ξm, θ)
+ pm(η, ξ1, . . . , ξm, θ)w
+ ϕm(η, ξ, u, ζ1, θ)ζ1,

ζ̇1 = ζ2 + φ1(η, ξ, u, ζ1, θ) + q1(η, ξ, u, ζ1, θ)w,
. . .

ζ̇n−1 = ζn + φn−1(η, ξ, u, ζ1, . . . , ζn−1, θ)
+ qn−1(η, ξ, u, ζ1, . . . , ζn−1, θ)w,

ζ̇n = v + φn(η, ξ, u, ζ1, . . . , ζn, θ)
+ qn(η, ξ, u, ζ1, . . . , ζn, θ)w,

y = h(η, ξ1, θ) + d(η, ξ1, θ)w,

(1)

where η ∈ Rl, ξ = [ξ1, . . . , ξm]T ∈ Rm ,
ζ = [ζ1, . . . , ζn]T ∈ Rn, u, v ∈ R are the control
inputs, θ is a uncertain parameter vector belong-
ing to a known compact set Ω, w ∈ Rr is the
disturbance input, y ∈ Rk is the controlled out-
put. All vector fields are assumed to be smooth.
We also assume f1(0, 0, θ) = 0, µi(0, . . . , 0, θ) = 0,
φi(0, . . . , 0, θ) = 0, i = 1, . . . , n, and h(0, 0, θ) = 0
for any θ ∈ Ω.

Remark 1. In single-input case, system (1) with
ζ1 ≡ 0 reduces to a strict triangular form, which
has been studied extensively (see, for example,
Isidori, 1996a; Isidori, 1996b; Su, et al., 1999).
Obviously, system (1) is not in a strict feedback
form and its zero dynamics (η-subsystem) con-
tains not only the state of the first subsystem
ξ but also the state of the second subsystem ζ.
Therefore, system (1) covers much broader class
of nonlinear systems. At the same time, the results
aforementioned are no longer suitable for system
(1).

Remark 2. Here we study two inputs case only
for the sake of simplicity. All results can be ex-
tended to multi-input case without any difficulty.

The following assumptions will be needed in the
sequel.

Assumption 1. The η-subsystem of (1) with
ζ1 ≡ 0 can be decomposed into the following two
cascade-connected subsystems:

η̇1 = f01(η1, η2, ξ1, θ) + p01(η1, η2, ξ1, θ)w,
η̇2 = f02(η2, ξ1, θ),

(2)

where η1 ∈ Rm1 , η2 ∈ Rm2 , m1 + m2 = l,
η = [η1

T , η2
T ]T , and with f01(0, 0, 0, θ) = 0 and

f02(0, 0, θ) = 0 for any θ ∈ Ω.

Assumption 2.

(a) For the η1-subsystem, there exists a real-
valued function W1(η1, θ), which is smooth in η1,
and positive definite and proper for any θ ∈ Ω,
such that

∂W1

∂η1
[f01(η1, η2, ξ1, θ) + p01(η1, η2, ξ1, θ)w]

≤ −α1‖η1‖2 + γ0
2‖w‖2 + k1(η2, ξ1)

(3)

for any θ ∈ Ω, some positive-definite function
k1(η2, ξ1) and some positive constants α1 and γ0.

(b) For the η2-subsystem, there exists a real-
valued function µ(η2) with µ(0) = 0 and a real-
valued function W2(η2, θ), which is smooth and
positive definite in η2 for any θ ∈ Ω, such that

∂W2

∂η2
f02(η2, µ(η2), θ) ≤ −α2W2(η2, θ),

α3‖η2‖2 ≤ W2(η2, θ)

(4)



for any θ ∈ Ω and some positive constants α2 and
α3.

Remark 3. Here we adopt the standard condi-
tions similar to that in (Su, et al., 1999; Isidori,
1996b). Assumption 1 and Assumption 2 mean
that when ζ ≡ 0 the zero dynamics of (1) take
two cascade-connected parts, one part is input-
to-state stable, the other part may be unstable
but stabilizable.

The following condition is crucial to the construc-
tion of a storage function of the system even in
single-input strict triangular form, and is com-
monly applied in the literature (see, for example,
Xie and Su, 1997; Su, et al. 1999).

Assumption 3. d(η, ξ1, θ) is uniformly bounded,
i.e., there exists a positive real number γd such
that for any θ ∈ Ω,

‖d(η, ξ1, θ)‖ ≤ γd,∀[ηT , ξ1]T ∈ Rl+1.

This paper deals with the following robust H∞
control problem for system (1):

Given any scalar γ > γd, design feedback control
laws u = u(η, ξ) with u(0, 0) = 0 and v = v(η, ξ, ζ)
with v(0, 0, 0) = 0 such that for any θ ∈ Ω:

(a) the resulting closed-loop system is input-to-
state stable with respect to the disturbance input
w.

(b) the L2-gain from disturbance input w to con-
trolled output y of the closed-loop is not larger
than γ for any θ ∈ Ω, i.e., there exists a function
β : Rl × Rm × Rn × Ω → R with β(0, 0, 0, θ) =
0, ∀θ ∈ Ω, such that for any initial condition
(η0, ξ0, ζ0) and all w ∈ L2[0,∞), it holds that

∞∫

0

yT (τ)y(τ)dτ ≤ γ2

∞∫

0

wT (τ)w(τ)dτ

+ β(η0, ξ0, ζ0, θ),
∀θ ∈ Ω.

(5)

Remark 4. Since global asymptotic stability with
zero input does not imply stability when they
are subjected to some non-zero inputs, and the
notion input-to-state stability (ISS) in (Sontag
and Wang, 1995) describes stronger and desirable
stability property of systems with bounded inputs.
Here, the internal stability with zero initial value
adopted in general H∞ control problem (Isidori,
1996a; Isidori, 1996b; Guo, et al. 2000; Lin, et al.
1999) is replaced by ISS.

Before developing the main results, we review
some results about robust H∞ control for single-
input strict triangular systems described as

η̇ = f1(η, ξ1, θ) + p0(η, ξ1, θ)w,

ξ̇1 = ξ2 + µ1(η, ξ1, θ) + p1(η, ξ1, θ)w,
...

ξ̇m−1 = ξm + µm−1(η, ξ1, . . . , ξm−1, θ)
+ pm−1(η, ξ1, . . . , ξm−1, θ)w,

ξ̇m = u + µm(η, ξ1, . . . , ξm, θ)
+ pm(η, ξ1, . . . , ξm, θ)w,

y = h(η, ξ1, θ) + d(η, ξ1, θ)w.

(6)

Lemma 1 (Su, 1999). The global robust H∞ con-
trol problem for the uncertain nonlinear system
(6) is solvable if Assumptions 1∼3 are satisfied.

According to (Su, 1999), we can easily have the
following fact.

Proposition 1. If the uncertain nonlinear sys-
tem (6) satisfies Assumptions 1∼3, then there ex-
ist functions σ1(η, ξ1),. . . , σm(η, ξ1, . . . , ξm) with
σj(0, . . . , 0) = 0,j = 1, . . . , m, and storage func-
tion Sm(η, ξ1, . . . , ξm, θ), which is a positive defi-
nite Class K∞ function, such that along the tra-
jectory of (6) with u = σm(η, ξ1, . . . , ξm) , we have

Ṡm + ‖y‖2 − ε2
m‖w‖2

≤ −lm(‖η‖2 + (ξ1 − σ0)2 + (ξ2 − σ1)2

+ . . . + (ξm − σm−1)2)
(7)

for some constants εm satisfying γ > εm > γd and
lm > 0, where σ0(η) = µ(η2).

We recall the following result when (6) becomes
the form

ẋ1 = f1(x1, θ) + q(x1, x2, θ)x2 + p1(x1, θ)w,
ẋ2 = u + f2(x1, x2, θ) + p2(x1, x2, θ)w,
y = h0(x1, θ) + d0(x1, θ)w.

(8)

Lemma 2 (Su, 1999). Suppose that for a given
scalar τ1 > 0, there exists a storage function
V1(x1, θ) for system (8) with x2 ≡ 0 satisfying

V̇1(x1, θ) + ‖y‖2 − τ2
1 ‖w‖2 ≤ −c1‖x1‖2,

∀θ ∈ Ω
(9)

for some positive real number c1. Then for any
scalar τ2 > τ1, there exists a control law u =
u(x1, x2), such that storage function

V2(x1, x2, θ) = V1(x1, θ) + 1
2xT

2 x2

for system (8) satisfies

V̇2(x1, x2, θ) + ‖y‖2 − τ2
2 ‖w‖2

≤ −c2(‖x1‖2 + ‖x2‖2),∀θ ∈ Ω
(10)

for some positive real number c2.

From (Su, 1999), we know that the control law
u = u(x1, x2) in Lemma 2 satisfies u(0, 0) = 0.



3. MAIN RESULT

In this section, we extend the backstepping tech-
nique to solve the robust H∞ control problem for
system (1). The main theorem is as follows.

Theorem 1. Assume Assumptions 1∼3 are satis-
fied. Then the global robust H∞ control problem
for system (1) is solvable.

Proof. We divide the proof into three steps.

Step 1. Consider the (η, ξ)-subsystem, i.e., sys-
tem (6). Proposition 1 gives (7).

Step 2. Make the global change of coordinates

η = η,
ξ̄i = ξi − σi−1, i = 1, . . . , m,
ζi = ζi, i = 1, . . . , n,

(11)

and impose the feedback u = σm, where σi, i =
0, 1, . . . , m, are shown in Proposition 1. Then,
system (1) can be expressed as

ż = F1(z, θ) + F2(z, ζ1, θ)ζ1 + P (z, θ)w,

ζ̇1 = ζ2 + φ1(η, ξ, σm, ζ1, θ)
+ q1(η, ξ, σm, ζ1, θ)w,

...

ζ̇n−1 = ζn + φn−1(η, ξ, σm, ζ1, . . . , ζn−1, θ)
+ qn−1(η, ξ, σm, ζ1, . . . , ζn−1, θ)w,

ζ̇n = v + φn(η, ξ, σm, ζ1, . . . , ζn, θ)
+ qn(η, ξ, σm, ζ1, . . . , ζn, θ)w,

y = h(η, ξ1, θ) + d(η, ξ1, θ)w,

(12)

where, z = [ηT , ξ̄1, . . . , ξ̄m]T ,

F1(z, θ) =




f1

ξ2 + µ1 − ∂σ0

∂η
f1

ξ3 + µ2 − ∂σ1

∂η
f1 − ∂σ1

∂ξ1
(ξ2 + µ1)

...

ξm + µm−1 − ∂σm−2

∂η
f1 − ∂σm−2

∂ξ1
(ξ2 + µ1)

− . . .− ∂σm−2

∂ξm−2
(ξm−1 + µm−2)

σm + µm − ∂σm−1

∂η
f1 − ∂σm−1

∂ξ1
(ξ2 + µ1)

− . . .− ∂σm−1

∂ξm−1
(ξm + µm−1)




,

F2(z, ζ1, θ) =




f2

ϕ1 − ∂σ0

∂η
f2

ϕ2 − ∂σ1

∂η
f2 − ∂σ1

∂ξ1
ϕ1

...

ϕm−1 − ∂σm−2

∂η
f2 − ∂σm−2

∂ξ1
ϕ1

− . . .− ∂σm−2

∂ξm−2
ϕm−2

ϕm − ∂σm−1

∂η
f2 − ∂σm−1

∂ξ1
ϕ1

− . . .− ∂σm−1

∂ξm−1
ϕm−1




,

P (z) =




p0

p1 − ∂σ0

∂η
p0

p2 − ∂σ1

∂η
p0 − ∂σ1

∂ξ1
p1

...

pm−1 − ∂σm−2

∂η
p0 − ∂σm−2

∂ξ1
p1

− . . .− ∂σm−2

∂ξm−2
pm−2

pm − ∂σm−1

∂η
p0 − ∂σm−1

∂ξ1
p1

− . . .− ∂σm−1

∂ξm−1
pm−1




.

Applying (7) to system (12) with ζ1 ≡ 0 results in

∂S̄m

∂z
(F1 + Pw) + ‖y‖2 − ε2

m‖w‖2 ≤ −lm‖z‖2, (13)

where S̄m(z, θ) = Sm(η, ξ1, . . . , ξm, θ).

Step 3. Since the coordinate transformation (11)
is a global diffeomorphism, the robust H∞ control
problem for system (1) is solvable if the robust
H∞ control problem for system (12) is solvable.
It is obvious that system (12) is in strict tri-
angular form. Therefore, we can realize the ro-
bust H∞ control for system (12) by a recursive
application of lemma 2. To this end, let con-
stants εm+1,. . .,εm+n satisfy εm < εm+1 < . . . <
εm+n = γ, β0(z) = 0 and ζn+1 = v and consider
the following system for t = 1, . . . , n,∑

t :



ż = F1(z, θ) + F2(z, ζ1, θ)ζ1 + P (z, θ)w,

ζ̇1 = ζ2 + φ1(η, ξ, σm, ζ1, θ)
+ q1(η, ξ, σm, ζ1, θ)w,

...
ζ̇t = ζt+1 + φt(η, ξ, σm, ζ1, . . . , ζt, θ)

+ qt(η, ξ, σm, ζ1, . . . , ζt, θ)w,
y = h(η, ξ1, θ) + d(η, ξ1, θ)w.

(14)

Introduce a global change of coordinates

ζ̄j = ζj − βj−1(z, ζ1, . . . , ζj−1) ,
j = 1, . . . , t,

and let

zt−1 = [zT , ζ̄1, . . . , ζ̄t−1]T .

System
∑

t can be rewritten in the form of (8)
with the state (zt−1, ζ̄t) and a control input ζt+1,
and (9) is satisfied. Using lemma 2, we know that
there exist a control law

ζt+1 = βt(z, ζ1, . . . , ζt)

with βt(0, 0, . . . , 0) = 0 and a storage function

Sm+t(z, ζ1, . . . , ζt, θ)

= Sm + 1
2 (ζ1 − β0)2 + . . . + 1

2 (ζt − βt−1)2,

such that for
∑

t it holds that

Ṡm+t + ‖y‖2 − ε2
m+t‖w‖2

≤ −lm+t(‖z‖2 + (ζ1 − β0)2 + . . . + (ζt − βt−1)2)

for some constant lm+t > 0.

When t = n we have

Ṡm+n + ‖y‖2 − γ2‖w‖2

≤ −lm+n(‖z‖2 + (ζ1 − β0)2

+ . . . + (ζn − βn−1)2),

(15)

where

Sm+n(z, ζ1, . . . , ζn, θ)

= Sm +
1
2
(ζ1 − β0)2 + . . . +

1
2
(ζn − βn−1)2.

(16)

From (15), we have

Ṡm+n ≤ −lm+n(‖z‖2 + (ζ1 − β0)2

+ . . . + (ζn − βn−1)2) + γ2‖w‖2.
(17)

From (15)∼ (17), it is known that
Sm+n(z, ζ1, . . . , ζn, θ) is a Class K∞ function for

∀θ ∈ Ω and system (12) is input-to-state stable
with respect to the disturbance input w, and we
have

∞∫

0

yT (τ)y(τ)dτ ≤ γ2

∞∫

0

wT (τ)w(τ)dτ

+ β(z0, ζ0
1 , . . . , ζ0

n, θ),

∀θ ∈ Ω,

(18)

where

β(z0, ζ0
1 , . . . , ζ0

n, θ) = Sm+n(z0, ζ0
1 , . . . , ζ0

n, θ)

with initial value (z0, ζ0
1 , . . . , ζ0

n). So the robust
H∞ control problem for system (12) is solvable.
It is easily seen that the controllers

u = σm(η, ξ1, . . . , ξm),
and

v = βn(z, ζ1, . . . , ζn),

solve the robust control problem for system (1).
Thus we complete the proof of theorem 1. 2

4. EXAMPLE

As an illustration of the above design method,
consider a simple nonlinear system of the form

η̇ = −η + ηξ2 + ηζ,

ξ̇ = u + ξsin(θ(η + ξ)) + 0.25w + ζ,

ζ̇ = v + w,
y = η + 0.5w,

(19)

where η, ξ, ζ ∈ R, and the constant unknown pa-
rameter θ ∈ [−50, 50]. Note that the η-subsystem
contains not only ξ but also ζ, and the system
is not in the strict triangular structure. We will
design a nonlinear state feedback controller for
system (19) such that the closed-loop system is
input-to-state stable and the L2 -gain from w to
y is not larger than

√
2.

System (19) is in the form of Eq. (1). It just
contains the η2-subsystem. Thus, W1 = 0, α1 =
0, γ0 = 0, k1 = 0. Choose µ(η2) ≡ 0, W2 =
0.5η2

2 . It is easily verified that Assumptions
1∼3 are satisfied and theorem 1 holds. By using
the procedure adopted in theorem 1, we obtain
storage function

S3(η, ζ, ζ, θ) = η2 + 1
2ξ2 + 1

2ζ2,

and controller

u = −2η2ξ − 2ξ,

v = −2η2 − ξ − 2ζ.
(20)
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Fig. 1. state response of the resulting closed-
loop system with w≡ 0 and θ = 50, η =
x1, ξ = x2, ζ = x3.

For the closed-loop system (19),(20), it holds that

Ṡ3 + ‖y‖2 − 2‖w‖2 ≤ − 3
4η2 − 3

4ξ2 − ζ2

for ∀θ ∈ [−50, 50].

Thus, controller (20) solves the robust H∞ control
problem for system (19). Fig. 1 shows the state
response of the resulting closed-loop system with
zero disturbance and θ = 50.

5. CONCLUSIONS

We have discussed the robust H∞ control prob-
lem for a class of multi-input non-minimum-phase
nonlinear systems with parameter uncertainty. A
system of this class consists of several subsystems
with both special feedback and feedforward inter-
connections and it may not be in strict triangular
form. A robust H∞ controller, which ensures that
the closed-loop system is input-to-state stable
with respect to the disturbance input and has a
prescribed L2-gain for all admissible parameter
uncertainties, is obtained by using an extension
of backstepping.
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