75 research outputs found
Surface oxidation for enhancing the hydrogen evolution reaction of metal nitrides: a theoretical study on vanadium nitride
A single oxide layer acts as a surface oxide activation layer (SOAL) on top of the VN surface toward the HER. VN is a simple model nitride, and this picture can be used for designing enhanced nitride-based catalysts with controlled oxidation of surfaces
An organosilane self-assembled monolayer incorporated into polymer solar cells enabling interfacial coherence to improve charge transport
The reproducible silylation of titanium oxide (TiO2) with small molecular (dichloromethyl) dimethylchlorosilane (DCS) as the cathode buffer layer was developed to improve electron extraction. Through incorporating the DCS capping layer into polymer solar cells (PSCs), the interfacial coherence of devices could be enhanced, leading to a shift in nanocrystallite size and a smaller internal charge transport resistance. Furthermore, a TiO2/DCS combined interfacial layer could serve as both an exciton dissociation center and a charge transfer channel, which results in a reduction in the energy barrier and electron loss, improving hole-blocking and surface-state passivation in the TiO2 interfacial layer. The Kelvin probe measurements demonstrate that the employment of the DCS nanolayer decreases conduction band energy of TiO2 via forming a dipole layer at the interface of TiO2 and the DCS nanolayer, which tunes the work-function of the device and ulteriorly enhances charge carrier transfer between the electrode and the active layer. As a result, the photocurrent and the fill factor of the PSCs are both increased, resulting in an increased power conversion efficiency (PCE) of 6.959%
An organosilane self-assembled monolayer incorporated into polymer solar cells enabling interfacial coherence to improve charge transport
The reproducible silylation of titanium oxide (TiO2) with small molecular (dichloromethyl) dimethylchlorosilane (DCS) as the cathode buffer layer was developed to improve electron extraction. Through incorporating the DCS capping layer into polymer solar cells (PSCs), the interfacial coherence of devices could be enhanced, leading to a shift in nanocrystallite size and a smaller internal charge transport resistance. Furthermore, a TiO2/DCS combined interfacial layer could serve as both an exciton dissociation center and a charge transfer channel, which results in a reduction in the energy barrier and electron loss, improving hole-blocking and surface-state passivation in the TiO2 interfacial layer. The Kelvin probe measurements demonstrate that the employment of the DCS nanolayer decreases conduction band energy of TiO2 via forming a dipole layer at the interface of TiO2 and the DCS nanolayer, which tunes the work-function of the device and ulteriorly enhances charge carrier transfer between the electrode and the active layer. As a result, the photocurrent and the fill factor of the PSCs are both increased, resulting in an increased power conversion efficiency (PCE) of 6.959%
The operation mechanism of poly(9,9-dioctylfluorenyl-2,7-diyl) dots in high efficiency polymer solar cells
The highly efficient polymer solar cells were realized by doping poly(9,9-dioctylfluorenyl-2,7-diyl) (PFO) dots into active layer. The dependence of doping amount on devices performance was investigated and a high efficiency of 7.15% was obtained at an optimal concentration, accounting for a 22.4% enhancement. The incorporation of PFO dots (Pdots) is conducted to the improvement of Jsc and fill factor mainly due to the enhancement of light absorption and charge transport property. Pdots blended in active layer provides an interface for charge transfer and enables the formation of percolation pathways for electron transport. The introduction of Pdots was proven an effective way to improve optical and electrical properties of solar cells
Enhanced electron extraction capability of polymer solar cells \u3ci\u3evia\u3c/i\u3e modifying the cathode buffer layer with inorganic quantum dots
Enhanced performance of polymer solar cells (PSCs) based on the blend of poly[N-9 -hepta-decanyl- 2,7-carbazole-alt-5,5-(4\u27,7\u27-di-2-thienyl-2\u27,1\u27,3\u27-benzothiadiazole)] (PCDTBT):[6,6]-phenyl-C70-butyric acid methyl ester (PC71BM) is demonstrated by titanium dioxide (TiO2) interface modification via CuInS2/ZnS quantum dots (CZdots). Devices with a TiO2/CZdots composite buffer layer exhibit both a high shortcircuit current density (Jsc) and fill factor (FF), leading to a power conversion efficiency (PCE) up to 7.01%. The charge transport recombination mechanisms are investigated by an impedance behavior model, which indicates that TiO2 interfacial modification results in not only increasing the electron extraction but also reducing impedance. This study provides an important and beneficial approach to develop high efficiency PSCs
Erratum: “The operation mechanism of poly (9,9-dioctylfluorenyl-2,7-diyl) dots in high efficiency polymer solar cells” [Appl. Phys. Lett. 106, 193904 (2015)]
We have noticed an error in Fig. 7 of the original article. Figs. 7(a) and 7(b) should be exchanged and the revised figure is shown below. We apologize for this error.
Polyelectrolyte interlayers with a broad processing window for high efficiency inverted organic solar cells towards mass production
Neutral polyelectrolyte interfacial layers in organic solar cells are well-known for their ability to tailor the work function of electrodes, improve charge carrier extraction and maximize open circuit voltage. However, they also suffer from low charge carrier conductivity, and therefore the interlayer must be kept thin, which in turn requires very precise deposition. This prerequisite significantly reduces the robustness of the fabrication process and makes such structures difficult to up-scale for roll-to-roll mass production. Herein, we find that by washing the polyelectrolyte layer with N,N-dimethylformamide (DMF) after deposition, solar cell efficiency jumps to near optimum levels, no matter what the original thickness of the polyelectrolyte layer. Subsequent characterization of the DMF-washed ZnO/PEI interlayer reveals a changed surface structure, passivated surface trap states, and thus improved transport properties and lower recombination losses. We demonstrate the general applicability of the method to other state-of-the-art material systems, namely P3HT:ICBA, PTB7:PC71BM and PTB7-Th:PC71BM. We find that the more efficient the material system, the larger the improvement in efficiency after DMF washing. Thus, this method represents a general way to relax the fabrication criteria for high efficiency organic solar cells. We anticipate that this method could be of use in other classes of devices such as OTFTs and OLEDs
Mesoporous titanium niobium nitrides supported Pt nanoparticles for highly selective and sensitive formaldehyde sensing
A proton exchange membrane fuel cell (PEMFC) gas sensor is a promising and novel gas sensing device. However, the poor sensitivity and strong cross sensitivity of commercial carbon-supported-platinum (Pt/C) remain obstacles to its utilization. Here, we demonstrate that the issue can be addressed using mesoporous titanium niobium nitrides (Ti0.75Nb0.25N) synthesized using a solid-solid phase separation process. Pt nanoparticles supported on ternary transition metal nitrides enable the strong metal support interaction (SMSI), which changes the surface electronic structure and catalytic activity of the electrode material. Compared with the Pt/C-sensor, the selectivity of the Pt/Ti0.75Nb0.25N-based sensor to formaldehyde (HCHO) is significantly higher, while the response to other gases is effectively inhibited. In mixed gas tests, HCHO sensing of the Pt/Ti0.75Nb0.25N-sensor is still not affected (within 3.5% of the standard deviation limit). Furthermore, the Pt/Ti0.75Nb0.25N-sensor exhibits a much higher sensitivity (0.208 mu A per ppm) toward HCHO when compared to the Pt/C-sensor (0.058 mu A per ppm). The Pt/Ti0.75Nb0.25N-sensor also exhibits extraordinary long-term stability due to its electrochemical stability and SMSI of the electrode material. This work hence points to the design and development of a new sensing electrode system, which offers a combination of high selectivity and sensitivity when used in fuel-cell gas sensors
- …