494 research outputs found

    Low-rank SIFT: An Affine Invariant Feature for Place Recognition

    Full text link
    In this paper, we present a novel affine-invariant feature based on SIFT, leveraging the regular appearance of man-made objects. The feature achieves full affine invariance without needing to simulate over affine parameter space. Low-rank SIFT, as we name the feature, is based on our observation that local tilt, which are caused by changes of camera axis orientation, could be normalized by converting local patches to standard low-rank forms. Rotation, translation and scaling invariance could be achieved in ways similar to SIFT. As an extension of SIFT, our method seeks to add prior to solve the ill-posed affine parameter estimation problem and normalizes them directly, and is applicable to objects with regular structures. Furthermore, owing to recent breakthrough in convex optimization, such parameter could be computed efficiently. We will demonstrate its effectiveness in place recognition as our major application. As extra contributions, we also describe our pipeline of constructing geotagged building database from the ground up, as well as an efficient scheme for automatic feature selection

    A Comparison of False-Information Policies in Five Countries before and during the COVID-19 Pandemic

    Get PDF
    This study analyzes five countries’ false-information policies before and during the COVID-19 pandemic. Building upon existing discussions of regulation models, this paper uses a qualitative, comparative case study method to unpack the characteristics of false-information policies in each country. The before-after comparisons show that each country has a unique evolving path of false-information regulation and that the state has enhanced or attempted to enhance its role in battling against the infodemic during the pandemic. The regulatory practices are a dynamic process and involve not only government and social media platforms but also multiple other actors, which is leading to more complex practices and blurring the boundary of existing models. We discuss the limitation of existing regulation models and suggest a relational perspective to understand the underlying relations between the state, platforms, and other stakeholders

    Managing Online Trolling: From Deviant to Social and Political Trolls

    Get PDF
    Trolling behaviors are extremely diverse, varying \ by context, tactics, motivations, and impact. \ Definitions, perceptions of, and reactions to online \ trolling behaviors vary. Since not all trolling is equal \ or deviant, managing these behaviors requires context \ sensitive strategies. This paper describes appropriate \ responses to various acts of trolling in context, based \ on perceptions of college students in North America. In \ addition to strategies for dealing with deviant trolling, \ this paper illustrates the complexity of dealing with \ socially and politically motivated trolling

    Microhabitat Segregation of Parapatric Frogs in the Qinling Mountains

    Get PDF
    Coexistence mechanisms for species with similar ecological traits and overlapping geographic distributions are basic questions in ecology and evolutionary biology. Specific habitat requirements often limit distribution range as well as facilitate partitioning resource utilization in ecological similar species. Understanding niche segregation and differences in microhabitat utilization can contribute to identifying coexistence mechanisms between parapatric species. Feirana quadranus and F. taihangnica are two closely related frog species with parapatric geographic ranges and an elongated contact zone within the Qinling Mountains, which is an important watershed for East Asia. Here, we analysed the difference in microhabitat utilization between the two frog species and explored the key ecological factors that induced their microhabitat differentiation based on quadrats sampled in the contact zone. Our comparison of twenty environmental variables showed that both species used microhabitats with alkalescent warm water and gentle slope conditions. The principal component analysis indicated that climate-related variables, vegetation conditions, and river width were the important factors for microhabitat utilization of these species. These findings contribute to our understanding on the coexistence mechanisms of these two related and parapatric Asian mountain frog species. This study can also be helpful for identifying target habitats to conduct conservation actions and management strategies effectively in the face of environmental changes

    Water Balance Analysis of Hulun Lake, a Semi-Arid UNESCO Wetland, Using Multi-Source Data

    Get PDF
    Hulun Lake is the largest lake in northeastern China, and its basin is located in China and Mongolia. This research aims to analyze the dynamic changes in the water volume of Hulun Lake and to estimate the groundwater recharge of the lake during the past 60 years. Multi-source data were used, and water-level-data-interpolation extrapolation, water-balance equations, and other methods were applied. The proportion of the contribution of each component to the quantity of water in Hulun Lake during the last 60 years was accurately calculated. Evaporation loss was the main component in the water loss in Hulun Lake. In the last 60 years, the average annual runoff into the lake was about 1.202 billion m3, and it was the factor with the largest variation range and the leading factor affecting the changes in the quantity of water in Hulun Lake. There was groundwater recharge in Hulun Lake for a long period, and the average annual groundwater recharge was about 776 million m3 (excluding leakage). The contribution ratio of the river water, groundwater, and precipitation to the recharging of Hulun Lake was about 5:3:2. The changes in the quantity of water in Hulun Lake are affected by climate change and human activities in China and Mongolia, especially those in Mongolia

    Extremely large magnetoresistance in topologically trivial semimetal α\alpha-WP2_2

    Full text link
    Extremely large magnetoresistance (XMR) was recently discovered in many non-magnetic materials, while its underlying mechanism remains poorly understood due to the complex electronic structure of these materials. Here, we report an investigation of the α\alpha-phase WP2_2, a topologically trivial semimetal with monoclinic crystal structure (C2/m), which contrasts to the recently discovered robust type-II Weyl semimetal phase in β\beta-WP2_2. We found that α\alpha-WP2_2 exhibits almost all the characteristics of XMR materials: the near-quadratic field dependence of MR, a field-induced up-turn in resistivity following by a plateau at low temperature, which can be understood by the compensation effect, and high mobility of carriers confirmed by our Hall effect measurements. It was also found that the normalized MRs under different magnetic fields has the same temperature dependence in α\alpha-WP2_2, the Kohler scaling law can describe the MR data in a wide temperature range, and there is no obvious change in the anisotropic parameter γ\gamma value with temperature. The resistance polar diagram has a peanut shape when field is rotated in ac\textit{ac} plane, which can be understood by the anisotropy of Fermi surface. These results indicate that both field-induced-gap and temperature-induced Lifshitz transition are not the origin of up-turn in resistivity in the α\alpha-WP2_2 semimetal. Our findings establish α\alpha-WP2_2 as a new reference material for exploring the XMR phenomena.Comment: 18 pages, 12 figure
    corecore