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ABSTRACT

This paper reports a new approach to quantitatively evaluate the performance of Electrical Tomography (ET) in measuring dynamic
multiphase flows. A virtual multiphase flow imaging platform based on ET is constructed and demonstrated on two typical gas–liquid flows,
i.e., water–gas flow and oil–gas flow. Two coupling simulation cases, i.e., water–gas flow field and electric currents field coupling simulation
and oil–gas flow field and electrostatics field coupling simulation, are performed to simulate multiphase flow sensing of Electrical Impedance
Tomography (EIT) and Electrical Capacitance Tomography (ECT). We quantitatively evaluated the representative EIT and ECT image
reconstruction algorithms on the virtual evaluation platform bringing evidence of the improved capability to capture the key flow features of
the fluid mixture with respect to traditional static phantoms. Ad-hoc treatment of the signal noise enables one to better capture dynamic
responses of the fluid phase volume fractions and their spatial gradients throughout their mixing along the conduit, ultimately
demonstrating unprecedented potential in the quantitative characterization of complex, unsteady multi-phase systems. The proposed image
reconstruction constitutes a highly effective platform for quantitative performance evaluation of ET, parameter optimization of model-based
ET image reconstruction algorithms, and for the development of data-driven ET algorithms in multiphase flow imaging.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0103187

NOMENCLATURE

Cnorm Normalized form of capacitances changes
E Identity matrix
F Volume force vector
Fg Gravity force vector
I Identity tensor

I (A) Amplitude of excitation current
JECT Jacobian matrix of ECT
JEIT Jacobian matrix of EIT

Jnorm Normalized form of JECT
k Iteration number
L Two-order four connected region Gaussian–Laplace

operator matrix
p Pressure

P[�] Truncation operator
u Velocity vector of the mass averaged mixture

U (V) Amplitude of excitation current
a Iteration step length
c Reinitialization parameter

DC Capacitance variation
DV Induced boundary voltage variation
De Permittivity variation
Dr Conductivity variation
Dr̂ Estimated conductivity variation

d Interface thickness controlling parameter
e Permittivity of the gas–liquid medium
ee Permittivity of the electrode
eg Permittivity of gas
el Permittivity of liquid
eo Permittivity of oil
ep Permittivity of the pipe
ew Permittivity of water

enorm Normalized permittivity of the gas–liquid medium
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ênorm The estimated value of enorm
eo Vacuum permittivity
gh variance of the reconstructed image

ghn Cross-covariance for the reconstructed image and real
image

gn variance of the real image
h Reconstructed image
k Regularization coefficient
l Mixture dynamic viscosity
lg Dynamic viscosity of the gas
ll Dynamic viscosity of the liquid
lo Dynamic viscosity of oil
lw Dynamic viscosity of water
n real image
q Mixture density
qg Density of gas
ql Density of liquid
qo Density of oil
qw Density of water
r Conductivity of the gas–liquid medium
re Conductivity of the electrode
rg Conductivity of gas
rl Conductivity of liquid
rp Conductivity of the pipe
rw Conductivity of water
x Angular frequency
w Angular frequency
/ Gas void fraction
u Electric potential

wh Mean intensity of the reconstructed image
wn Mean intensity of the real image

AGS Adaptive Group Sparsity
DOI Domain of Interest
ECT Electrical Capacitance Tomography
EIT Electrical Impedance Tomography
ET Electrical Tomography

IGLR Iteration Gaussian–Laplace Regularization
IWFHR Iterative Weighted Fidelity and Hybrid Regularization

LBP Linear Back Projection
LI Projected Landweber Iteration

OES-CS Oil–gas flow field and Electrostatics field Coupling
Simulation

RIE Relative Image Error
SA-SBL Structure-Aware Sparse Bayesian Learning

SBL Sparse Bayesian Learning
SSIM Structural Similarity Index Measure
STR Standard Tikhonov Regularization

TR-GL Tikhonov Regularization based on the
Gaussian–Laplace operator

TV Total variation
WEC-CS Water–gas flow field and Electric Currents field

Coupling Simulation
3D-FECM Three-dimensional fluid-electric field coupling model

I. INTRODUCTION

Electrical Tomography (ET), such as Electrical Capacitance
Tomography (ECT)1–3 and Electrical Impedance Tomography (EIT),4–6

represents an agile, non-intrusive, and non-radioactive imaging tech-
nology. With ET, the time-varying map of electrical properties (e.g.,
permittivity, conductivity) in the domain of interest (DOI) can be
reconstructed to infer the internal profile of the measured object.
Promoted by its portability and excellent temporal resolution (up to
1000 frames per second), ET offers unprecedented potential in indus-
trial and biomedical imaging, especially in monitoring dynamic multi-
phase flows, which are ubiquitous in industrial and biological
processes yet prone to limited real-time experimental observation due
to the lack of adequate flow visualization and measurement techni-
ques.7–9 However, existing ET technology suffers from low spatial
resolution (around 10% of the sensor diameter) due to its severe ill-
posed and nonlinear inverse problems, limiting its use to merely qual-
itative imaging in most applications.2,10–13 It has been a long-standing
challenge and research focus to improve the image quality of ET.

Persistent efforts in the scientific community have focused on
developing advanced image reconstruction algorithms for ET. Iterative
optimization methods are commonly used to resolve the nonlinear ill-
posed ET inverse problems with regularizations, e.g., Total Variation
(TV) regularization,14 sparse regularization,15 and sparse representa-
tion.16 Some non-iterative approaches, e.g., Linear Back Projection
(LBP),17 truncated singular value decomposition,18 and D-bar
method,19 are also widely adopted for real-time ET imaging. The
state-of-art ET image reconstruction algorithms, e.g., Sparse Bayesian
Learning (SBL),20 Adaptive Group Sparsity (AGS),21 model-based
deep learning,22 Iterative Weighted Fidelity and Hybrid Regularization
(IWFHR),23 are reported to acquire high-quality ET images. Despite
considerable improvements, the assessment of existing ET reconstruc-
tion algorithms for dynamic multiphase flows still remains heavily
dependent on static phantom data.7,24 In addition to the issue of ET
inverse problems, the inability to obtain the ground truth of fluid
phase distributions (due to the highly random and nonlinear nature of
multiphase flows) also hindered the comprehensive assessment of ET
image reconstruction algorithms in multiphase flow imaging.25,26

Image quality evaluation is essential in optimizing the image
reconstruction algorithms of ET.27,28 Static simulation and phantom-
based experimental approaches have been the primary methods for
evaluating ET image quality and algorithm performance since the
ground truth of dynamic multiphase flow profiles is unavailable in
most practical flow facilities. Such static methods have implications for
the image reconstruction algorithms’ assessment, yet they are oversim-
plified in many scenarios. Therefore, it is challenging to perform a
quantitative evaluation of ET for the dynamic multiphase flow mea-
surement. More realistic configurations call for more advanced evalua-
tion approaches for ET.

To address the issue mentioned above in multiphase flow imag-
ing, Ye et al. exploited a fluid-electric field coupling method and
reported a two-dimensional simulation coupled model to investigate
the image quality of ECT for measuring the dynamic complex two-
phase flows.16,29 Based on the above research studies, we developed a
three-dimensional fluid-electric field coupling model (3D-FECM) to
dynamically simulate oil–gas two-phase flow imaging and quantita-
tively evaluated the performance of ECT.30 Here, we further propose a
virtual evaluation platform of ET, expanding the 3D-FECM to two
typical ET modalities, i.e., ECT and EIT. Two types of gas–liquid two-
phase flows, i.e., the oil–gas flow and the water–gas flow, and virtual
ET data, are virtually generated by 3D-FECM and separately used for
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ECT and EIT image quality evaluation. We then demonstrate quanti-
tative evaluation results of representative ET image reconstruction
algorithms using the virtual platform and commonly adopted metrics.

II. METHODOLOGY
A. Principle of 3D-FECM

The 3D-FECM contains a fluid field interface to generate the
gas–liquid two-phase flow data and electric field interfaces to model
the ET sensors.30 The dynamic phase distributions and the corre-
sponding electrical measurements from the virtual ET sensors can be
simultaneously collected by coupling the fluid and electric fields.

In fluid field simulation, we adopt the laminar two-phase flow
interface based on the incompressible Navier–Stokes equations31 to
simulate the gas–liquid flow, which can be expressed as

q
@u
@t
þ q u � rð Þu ¼ r � �pIþ l ruþruTð Þ

� �
þ Fþ Fg ; (1)

r � u ¼ 0; (2)

where u represents the velocity vector of the mass averaged mixture, I
represents the identity tensor, F is the volume force vector, Fg is the
gravity force vector, p is the pressure, and l is the mixture dynamic
viscosity given by

l ¼ ll þ ðlg � llÞ/: (3)

The mixture density q is defined by

q ¼ ql þ ðqg � qlÞ/; (4)

where ll and ql represent the dynamic viscosity and the density of the
liquid, respectively; lg and qg represent the dynamic viscosity and the
density of the gas, respectively; and / is the gas void fraction.

The level set method32 is used to track the interface between gas
and liquid phases, which can be expressed as

@/
@t
þ u � r/ ¼ cr � dr/� /ð1� /Þ r/

jr/j

� �
; (5)

where c is the reinitialization parameter (set to 1 by default) and d is
the interface thickness controlling parameter (set to hmax/2, where
hmax is the maximum grid size in the component).

Two electric field interfaces, i.e., the electrostatics interface and
the electric currents interface, are used to model the ECT and the EIT
sensors, respectively.

In the electric currents interface, the electric potential u can be
determined by the Poisson-type differential equation33

�r � rþ jxeð Þru ¼ 0; (6)

where x is the angular frequency and r and e represent the conductiv-
ity and the permittivity of the gas–liquid medium, respectively.

In the electrostatics interface, the relationship between u and e
can be represented as29

�r � eoeruð Þ ¼ 0; (7)

where eo is the vacuum permittivity.
The equivalent conductivity and permittivity of the mixing fluid

can be evaluated by the Wiener Upper Bound formula34

r ¼ rg/þ rlð1� /Þ; (8)

e ¼ eg/þ elð1� /Þ; (9)

where rg and rl represent the electrical conductivity of gas and liquid,
respectively, and eg and el represent the permittivity of gas and liquid,
respectively.

B. Principle of ET

This study employs two ET modalities for imaging performance
evaluation, i.e., EIT and ECT.

1. Electrical impedance tomography

By exploiting the time-difference imaging of EIT, the induced
boundary voltage changes (DV) can be measured to reconstruct the
conductivity variation in DOI (Dr). The relationship between DV and
Dr can be simplified to a linearized model,35

DV ¼ JEITðDrÞ; (10)

where JEIT is a Jacobian matrix, i.e., the sensitivity distribution of the
EIT sensor.

Image reconstruction of EIT is a typical ill-posed inverse prob-
lem, which can be solved by applying the following optimization
framework,

Dr̂ ¼ arg min
Dr

dðDV; JEITDrÞ þ kRðDrÞ; (11)

where Dr̂ is the estimated conductivity variation, k denotes the regu-
larization coefficient, d(DV, JEITDr) is the data-fidelity term, and
R(Dr) represents the regularization term that encodes the prior infor-
mation of the conductivity variation.

Standard Tikhonov Regularization (STR)36 is the most standard
regularization algorithm in EIT image reconstruction, which is
expressed as

Dr̂ ¼ arg min
Dr

1
2
ðkDV� JEITDrk2 þ kkEDrk2Þ; (12)

where E denotes the identity matrix, which can be substituted by the
Gaussian–Laplace operator to penalize the fringe effect in image recon-
struction. The Tikhonov regularization based on the Gaussian–Laplace
operator37 is given by

Dr̂ ¼ arg min
Dr

1
2
ðkDV� JEITDrk2 þ kkLDrk2Þ; (13)

where L denotes the two-order four connected region
Gaussian–Laplace operator matrix.

Iterative methods are usually adopted in EIT image reconstruc-
tion to improve image quality. The iteration form of (13), named
Iteration Gaussian–Laplace Regularization (IGLR),37 is expressed as

Dr̂ðkþ1Þ ¼ Dr̂ðkÞ � a JEIT
TðJEITDr̂ðkÞ � DVÞ þ kLTLDr̂ðkÞ

h i
; (14)

where k is the iteration number, Dr̂ðkÞ is the estimated conductivity
variation at the kth iteration, and a is the iteration step length.

We also introduce the state-of-the-art Structure-Aware
Sparse Bayesian Learning (SA-SBL)20 for EIT imaging performance
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evaluation. From a Bayesian perspective, the optimization problem in
(11) can ultimately be formulated as

Dr̂ ¼ arg min
Dr
�log pðDVjDrÞ � k log pðDrÞ; (15)

where the log-likelihood term log p(DVjDr) enforces data fidelity; the
parametric log-prior term klog p(Dr) embodies structural constraints
that reflect the prior knowledge.

2. Electrical capacitance tomography

ECT estimates the permittivity distribution in DOI through
inter-electrode capacitance measurements, where the change of
capacitances (DC) in response to the permittivity variation (De) can
be approximated by3

DC ¼ JECT Deð Þ; (16)

where JECT is the Jacobian matrix, i.e., the sensitivity distribution of
the ECT sensor.

A normalized form of Eq. (16) can be written as

Cnorm ¼ Jnormenorm; (17)

where Cnorm and Jnorm are the normalized form of DC and JECT,
respectively, and enorm represents the normalized permittivity.

The image reconstruction of ECT is to determine enorm based on
Cnorm and Jnorm. Linear Back Projection (LBP) is the most reference
algorithm in ECT image reconstruction and is widely used for real-time
imaging due to its simplicity and fast speed. By using LBP, the estimated
value of normalized permittivity distribution (ênorm) can be calculated,

3

ênorm ¼ Jnorm
TCnorm: (18)

Projected Landweber Iteration (LI)38 is one of the most com-
monly used iterative algorithms for ECT, which can be expressed as

ênorm
ðkþ1Þ ¼ P ênorm

ðkÞ � aJnorm
TðJnormênorm

ðkÞ � CnormÞ
h i

; (19)

P f ð�Þ½ � ¼
0 if f ð�Þ < 0;

f ð�Þ if 0 � f ð�Þ � 1;

1 if f ð�Þ > 1;

8><
>: (20)

where k is the iteration number, ênormðkÞ is the estimated normalized
permittivity distribution at the kth iteration, a is the iteration step
length, and P[�] is a truncation operator.

The Tikhonov method is a universal regularization tool to solve
ECT inverse problems. In ECT image reconstruction, the Tikhonov
regularization based on the Gaussian–Laplace operator (TR-GL)37 can
be expressed as

ênorm ¼ ðJnormTJnorm þ kLTLÞ�1JnormTCnorm; (21)

where k is the regularization coefficient and L is the two-order four
connected region Gaussian–Laplace operator matrix.

III. THREE-DIMENSIONAL FLUID-ELECTRIC FIELD
COUPLING SIMULATION

Figure 1 shows a pilot-scale multiphase flow facility at the
Multiphase Flow Engineering Laboratory of the Tsinghua
International Graduate School, which mainly consists of a gas storage

tank, a multiphase flow separator, gas, and liquid single-phase flow
sections, the mixing section, and the control system. The testing sec-
tion of the facility has an internal diameter of 50mm, in which a 12-
electrode ECT sensor with a transparent window is installed for visual
observation. We developed a 3D-FECM to duplicate the testing sec-
tion of the multiphase flow facility. In the facility, single-phase flows of
gas and liquid are separately supplied and controlled to generate gas–
liquid flows with different volumetric concentrations. Similarly, in 3D-
FECM, dynamic flows of gas and liquid are separately regulated to
simulate various gas–liquid flows.

A. Validation experiment

Validation experiments were undertaken to assess the perfor-
mance of 3D-FECM. During the experiment, the working gas and liq-
uid are air (permittivity 1.0, density 1.3 kg/m3) and white oil
(permittivity 2.18, density 879 kg/m3), respectively. The working pres-
sure in the testing section is set to 0.6MPa, and the experimental tem-
perature is about 30 �C. Three working conditions, labeled as case 1,
case 2, and case 3, are set for comparison: Case1 is the initial working
condition where the pipe in the testing section is filled with oil; in case
2, the volume flow rate of air and white oil is set as 20.0 and 5.0m3/h,
respectively; and in case 3, the volume flow rate of air and white oil is
set as 100.0 and 2.5m3/h, respectively.

In line with the experimental setup, we conducted a 3D field cou-
pling simulation using COMSOLMultiphysics andMatlab. The gas phase
for gas–liquid flow simulation is set as air with permittivity eg¼ 1.0, den-
sity qg¼ 1.3kg/m3, and dynamic viscosity lg¼ 1.81� 10�5Pa s. The liq-
uid phase is set as white oil with permittivity eo¼ 2.18, density
qo¼ 879kg/m3, and dynamic viscosity lo¼ 0.02Pa s. To optimize the
computational efficiency of the coupling simulation, we constrain the
operational conditions to isothermal by prescribing the temperature of
the system to a constant value of 303.15K, thus configuring the gas–liquid
flow as incompressible, and the physical and chemical properties of each
phase to be independent of the pressure. We imposed the inlet velocity
and outlet pressure boundary conditions to avoid convergence issues in
the gas–liquid two-phase flow simulation. We prescribe backflow sup-
pression at the outlet boundary to prevent recirculation and the wall
boundary condition as no-slip. Gas–liquid flows with different volumetric
concentrations were generated by regulating inlet gas and liquid velocities
perpendicular to the entrance surfaces.

Figures 2(a) and 2(b) shows examples of typical gas–liquid flows
generated from the experimental flow facility and the 3D-FECM,
respectively. Liquid Volume Fraction (LVF) is taken here as the key
validation parameter describing the gas–liquid flow system.39 During
the experiments, we first applied ECT to continuously measure the
gas–liquid flow by LBP when the experimental condition is in a quasi-
static state, then adopted the image-based method to calculate LVF. By
averaging the continuous measurements, the mean value of LVF for
each working condition can be obtained. Figure 3 shows the compari-
sons of the LVF results between the simulation and experiment. It can
be seen that, as working condition changes, the change of simulation
results is in accordance with that of the experimental results. While
this provides confidence in the capability to capture the baseline flow
features, discrepancies between simulation and experiment are appar-
ent. Despite the established background in fundamental multiphase
flow, accurate modeling of more complex and highly unsteady systems
remains an extremely challenging field of very active investigation
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owing to the breadth of the spatial scales of relevance, the discontinu-
ous nature of the flows, the multitude of key driving parameters and
the sensitivity to boundary conditions.40 Compounding these limita-
tions with the large noise-to-signal ratio of ET measurement makes
the achievement of a close match between simulation and experiment
a critical challenge.

B. Simulation setup

For the majority of existing ET applications, EIT is commonly
applied to visualize conductive flows such as water-dominated flows,
while ECT is often used to image dielectric flows such as oil-dominated
flows.9 Therefore, two typical gas–liquid flows, i.e., the water–gas
flow and the oil–gas flow, are virtually generated, and two coupling

simulations, i.e., the Water–gas flow field and Electric Currents field
Coupling Simulation (WEC-CS) and the Oil–gas flow field and
ElectroStatics field Coupling Simulation (OES-CS), are conducted to
demonstrate the performance evaluation of EIT and ECT image recon-
struction algorithms, respectively. Figures 4(a) and 4(b) show the
virtual platform with a 16-electrode EIT sensor and a 12-electrode ECT
sensor, respectively. The platform has two inlets, including a gas inlet, a
liquid inlet, and a mixture outlet. By injecting gas and liquid into the
system through the two inlets, gas–liquid two-phase flows are formed
in the pipe and then flow out from the mixture outlet.

In WEC-CS, the gas–liquid flow generated by the fluid field is a
water–gas flow, and the electric currents interface is applied to simu-
late the EIT sensor. For the water–gas flow, the densities of the water
and gas are 997 and 7.07 kg/m3, respectively. The dynamic viscosities

FIG. 1. The testing section of a pilot-scale multiphase flow testing facility.
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of the water and gas are 1.01 � 10�3 and 1.81E-5Pa s, respectively.
For the electric currents interface, the electrical conductivity of pipe,
electrode, air, and water is 1 � 10�14 S/m, 7.41 � 105 S/m, 0 S/m, and
0.03 S/m, respectively. The relative permittivity of pipe, electrode, air,
and water is 2.6, 1, 1, and 78, respectively. The equivalent conductivity

and permittivity of the mixing fluid are evaluated by Eqs. (8) and (9),
respectively. Complementary alternating current pair with the value of
[þ1A, �1A] is alternately applied to the electrodes for induced
boundary voltage measurement. A total of 4 260 129 tetrahedral ele-
ments, with a maximum element size of 2.73mm and a minimum ele-
ment size of 0.082mm, were used to discretize the domain [see
Fig. 5(a)]. The details of the WEC-CS setup are listed in Table I.

In OES-CS, the fluid field generates oil–gas flows, and the electro-
statics interface is used to model the ECT sensor. For the oil–gas flow,
the gas phase is air with a density of 7.07 kg/m3 and a dynamic viscosity
of 1.81 � 10�5 Pa s. The liquid phase is white oil with a density of
821 kg/m3 and the dynamic viscosity of 1.23 � 10�2 Pa s. For the elec-
trostatics interface, the relative permittivity of pipe and electrode is 2.6
and 1, respectively. The relative permittivity of oil and air is 2.18 and 1,
respectively. The equivalent permittivity of the mixing fluid is evaluated
by (9). We alternately injected the excitation voltage with the value of
1V into the electrodes to measure the inter-electrode capacitances.
Tetrahedral meshes consisting of 4 104 759 elements are generated, the
maximum element size of the mesh is 3.5mm and the minimum ele-
ment size is 0.15mm [see Fig. 5(b)]. The details of the OES-CS are
listed in Table II.

C. Coupling simulation results

Figures 6 and 7 show the WEC-CS and the OES-CS flowcharts,
respectively. In coupling simulations, the gas–liquid flow data (i.e., the

FIG. 2. Typical gas–liquid flows generated from (a) real flow facility and (b) 3D-FECM.

FIG. 3. Comparison of the simulation LVF with the experiment LVF.
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water–gas flow data and the oil–gas flow data) generated by the fluid
field interfaces can be coupled to the electric field interfaces (i.e., the
electric current field and the electrostatic field) to calculate the electric
potential distribution within the virtual sensors. Through dynamic
simulations following the EIT and ECT measurement principles, 104
induced boundary voltages, and 66 inter-electrode capacitances corre-
sponding to the specific gas–liquid flows can be calculated and used
for the image reconstructions of the water–gas and oil–gas flows in the
DOI, respectively.

Figure 8 shows the representative sequential water–gas two-
phase flows with the period range from 0 to 0.6 s generated by the fluid
field interface in WEC-CS. The pipe is initially filled with water. With
the gas and water injection, the water–gas two-phase flow is gradually
formed and this mixture travels through the EIT sensor. Figure 8 also
illustrates the derivation of the true distribution of conductivity varia-
tion in the EIT sensing region, which is adopted as the ground truth
for quantitative comparison. The 3D fluid volumetric concentration
distributions within the EIT sensor can be extracted from the time-
varying water–gas two-phase flows and converted to 2D fluid volu-
metric concentration distribution by averaging voxel-to-voxel along
the axial direction of the sensor. By setting the homogeneous water as
the background reference (see case 1 in Fig. 8), the conductivity varia-
tion distributions can be obtained from the 2D fluid volumetric

concentration distributions. Through dynamic simulation following
the EIT measurement principles, the relative change of induced
boundary voltages corresponding to the specific water–gas flows in
Fig. 8 can be calculated, as shown in Fig. 9. Previous research has
shown that the induced boundary voltages have a nonlinear relation-
ship with the water–gas flow in the sensing region of EIT, which can
be used to reconstruct the conductivity distribution in the DOI.41,42

Typical sequential oil–gas two-phase flows generated by the fluid
field interface during the OES-CS process are presented in Fig. 10. The
pipe is initially filled with oil. With the oil and gas injection, oil–gas
two-phase flows are formed in the pipe and flow through the ECT
sensor. Like the derivation of the true distribution of conductivity vari-
ation, the true permittivity distribution can also be obtained from
OES-CS and used as the ground truth for qualitative comparison.
Through dynamic coupling simulation, the oil–gas flow data can be
coupled to the ECT sensor to calculate inter-electrode capacitances.
Figure 11 shows the calculated capacitances corresponding to the
oil–gas two-phase flows in Fig. 10.

IV. QUANTITATIVE EVALUATION AND DISCUSSION
A. Case studies

We implemented three representative image reconstruction algo-
rithms, i.e., the STR (one-step approach), IGLR (iterative approach),

FIG. 4. Virtual multiphase flow measurement platform with ET sensors.

FIG. 5. Mesh of the 3D-FECM model.
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and SA-SBL (statistical approach), for EIT performance evaluation.
The regularization coefficient k for both STR and IGLR is determined
using the L-curve method.43 For IGLR, the images are reconstructed
by adopting the optimal iteration number (i.e., the iteration with the

minimum relative image error) with the iteration step length of 0.008.
For SA-SBL, the solution accuracy tolerance is set as 1E-7, the pattern
relevance factor is fixed as 0.3, and the block size is selected as 4.

For ECT, two commonly used image reconstruction algorithms,
i.e., the LBP and LI, are selected to reconstruct the cross-sectional permit-
tivity distribution. To evaluate the best performance of the LI, the opti-
mal iteration number with a relaxation factor of 1 is adopted. We also
introduce the TR-GL in ECT image reconstruction for comparison and
adopt the L-curve method to determine the regularization coefficient.

To simulate the background noise of the real-world ET system
and evaluate the noise performance of the selected algorithms, we add
the additive noise with different SNR levels, i.e., 80, 70, 60, 50, 40, 30,
and 20 dB to the virtual ET measurements for image reconstruction.
To quantitatively evaluate the quality of reconstructed images, two
standard metrics, i.e., Relative Image Error (RIE)35 and Structural
Similarity Index Measure (SSIM),44 are adopted,

TABLE I. WEC-CS setup.

Interface Parameters Value Description

Fluid field
interface

qw (kg/m3) 997 Density of water
qg (kg/m

3) 7.07 Density of gas
lw (Pa�s) 1.01 � 10�3 Dynamic viscosity of

water
lg (Pa�s) 1.81 � 10�5 Dynamic viscosity of the

gas
Electric
currents
interface

rp (S/m) 1 � 10�14 Electrical conductivity of
pipe

re (S/m) 7.41 � 105 Electrical conductivity of
the electrode

rw (S/m) 0.03 Electrical conductivity of
water

rg (S/m) 0 Electrical conductivity of
the gas

ep 2.6 Relative permittivity of the
pipe

ee 1 Relative permittivity of the
electrode

ew 78 Relative permittivity of
water

eg 1 Relative permittivity of
gas

I (A) þ1, �1 Amplitude of excitation
current

TABLE II. OES-CS setup.

Interface Parameters Value Description

Fluid field
interface

qo (kg/m
3) 821 Density of oil

qg (kg/m
3) 7.07 Density of gas

lo (Pa�s) 1.23 � 10�2 Dynamic viscosity of oil
lg (Pa�s) 1.81 � 10�5 Dynamic viscosity of the gas

Electrostatics
interface

ep 2.6 Relative permittivity of the
pipe

ee 1 Relative permittivity of the
electrode

eo 2.18 Relative permittivity of oil
eg 1 Relative permittivity of gas

U (V) 1 Amplitude of excitation
current

FIG. 6. Flowchart of WEC-CS.
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FIG. 7. Flowchart of OES-CS.

FIG. 8. A representative set of sequential water–gas flows obtained from WEC-CS.
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FIG. 9. Relative changes of induced boundary voltages obtained from WEC-CS.

FIG. 10. A representative set of sequential oil–gas flows obtained from OES-CS.
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FIG. 11. Inter-electrode capacitances obtained
from OES-CS.

TABLE III. EIT image reconstruction results based on noise-contaminated data with 60 dB SNR.

Phantom Ground truth

Reconstructed images

STR IGLR SA-SBL

P1

SSIM
RIE

0.842
0.145

0.842
0.145

0.842
0.145

P2

SSIM
RIE

0.829
0.194

0.953
0.069

0.856
0.145

P3

SSIM
RIE

0.784
0.144

0.942
0.082

0.883
0.157

P4

SSIM
RIE

0.849
0.136

0.934
0.086

0.949
0.148
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RIE ¼ kh� nk2
knk2

; (22)

SSIM ¼
ð2whwn þM1Þð2ghn þM2Þ

ðwh
2 þ wn

2 þM1Þðgh
2 þ gn

2 þM2Þ
; (23)

where h represents the reconstructed image, n represents the actual
image, wh and wn are the mean intensities of h and n, respectively, gh

and gn are the variances of h and n, respectively, ghn is the cross-
covariance for h and n, andM1 andM2 are constants.

B. Evaluation results and discussion

1. Electrical impedance tomography

Table III displays the reconstructed EIT images and corresponding
quantitative evaluations (i.e., the SSIM and the RIE) based on STR, IGLR,
and SA-SBL for five selected phantoms (i.e., P1, P2, P3, P4, and P5).
These results adopt noise-contaminated voltage data with 60dB SNR for
image reconstruction. For the given phantoms, the reconstructed images
of all the selected algorithms have similar conductivity variations with the
ground truth. Compared to IGLR and SA-SBL, the reconstructed images

FIG. 12. Quantitative evaluation results of
EIT images reconstructed by STR, IGLR,
and SA-SBL.

TABLE III. (Continued.)

Phantom Ground truth

Reconstructed images

STR IGLR SA-SBL

P5

SSIM
RIE

0.891
0.107

0.905
0.143

0.926
0.124
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using STR showmore substantial artifacts and graver distortion. The rele-
vant quantitative evaluation results further confirm the worst results of
STR as it yields the largest RIE, i.e., 0.194, and the lowest SSIM, i.e., 0.784.
As for the results of IGLR and SA-SBL, image qualities are improved with
fewer artifacts and distortion. The reconstructed images using IGLR have

a higher SSIM (above 0.905) and smaller RIE (below 0.143), indicating
the superior reconstruction imaging quality of IGLR with more accurate
conductivity estimations of the flows.

The performance of the three selected algorithms is further vali-
dated on noise-contaminated voltage data with different SNR levels

TABLE IV. ECT image reconstruction results based on noise-contaminated data with 60 dB SNR.

Phantom Ground truth

Reconstructed images

LBP LI TR-GL

P1

SSIM
RIE

0.987
0.044

0.987
0.038

0.731
0.116

P2

SSIM
RIE

0.925
0.180

0.926
0.178

0.780
0.167

P3

SSIM
RIE

0.825
0.290

0.829
0.286

0.731
0.235

P4

SSIM
RIE

0.827
0.156

0.833
0.151

0.709
0.156

P5

SSIM
RIE

0.800
0.247

0.813
0.245

0.741
0.223
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ranging from 20 to 80 dB, and the corresponding comparison results
in terms of SSIM and RIE are presented in Fig. 12. The comparison
results further demonstrate that the IGLR achieves the best reconstruc-
tion imaging quality among these selected algorithms, as the SSIM of
the IGLR result is within 0.90 to 0.95, and its RIE changes from 0.2 to
0.1 for the SNRs ranging from 20 to 80 dB, which are better than those
of the STR result (i.e., SSIM: from 0.90 to 0.95; RIE: from 0.1 to 0.2)
and the SA-SBL result (i.e., SSIM: from 0.90 to 0.95; RIE: from 0.1 to
0.2). We also observe that the SSIMs increase, and RIEs decrease with
the increase in SNR from 20 to 40 dB for all the results. After that, the
SSIMs and the RIEs remain nearly unchanged as SNR continues to
rise, indicating that the noise with SNR above 40 dB has no noticeable
effect on the image reconstruction performance of the given algo-
rithms. It is worth noting that the RIE of the SA-SBL result increases
by only 0.1 when the SNR decreases from 80 to 20 dB, much less than
those of the IGLR results (rise by 0.2) and the STR results (rise by 0.3).
Overall, SA-SBL presents excellent noise reduction performance.

2. Electrical capacitance tomography

Table IV compares the ECT image reconstruction results using
different algorithms, i.e., LBP, LI, and TR-GL. For the given phantoms,
all the reconstructed images using LBP are similar to those using LI,
and the values of SSIM and RIE are also close to those from LI, indi-
cating that the LBP and the LI demonstrate similar performance in
permittivity distribution reconstruction in multiphase flow imaging.
In comparison, the reconstructed images using TR-GL present more

vital distortion and show more severe deterioration in the boundary
area of the pipe, with the value of the SSIM for each phantom being
0.731, 0.780, 0.731, 0.709, and 0.741, much lower than those of the
LBP results (0.987, 0.925, 0.825, 0.832, and 0.806) and the LI results
(0.987, 0.926, 0.829, 0.833, and 0.813).

Figure 13 presents the quantitative evaluations of the ECT image
reconstruction results regarding SSIM and RIE concerning different
SNR levels. For all the given algorithms and phantoms, the SSIMs
increase and the RIEs decrease as the SNRs increase from 20dB to
60 dB, and then both SSIMs and RIEs tend to stabilize with the further
increasing SNR. This indicates that the noise with SNR higher than or
equal to 60 dB has no noticeable effect on the performance of these
selected algorithms. However, the noise with SNR lower than 50 dB
dramatically reduces the image reconstruction quality.

V. CONCLUSION

This study proposed a virtual platform for quantitative multiphase
flow imaging performance evaluation using electrical tomography. The
virtual platform is centered on a three-dimensional Fluid-Electric field
Coupling model (3D-FECM) based on which the Water–gas flow field
and Electric Currents field Coupling Simulation (WEC-CS) and the
Oil–gas flow field and ElectroStatics field Coupling Simulation (OES-
CS) are separately implemented for imaging performance evaluation
of EIT and ECT. As case studies, three representative image recon-
struction algorithms of EIT were assessed on our virtual platform.
The SA-SBL presented the best noise reduction performance among
other algorithms from the comparison. We also selected three

FIG. 13. Quantitative evaluation results of
ECT images reconstructed by LBP, LI,
and TR-GL.
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prevailing ECT image reconstruction algorithms for quantitative per-
formance evaluation of ECT in multiphase flow imaging. The results
showed that, for the given cases, the LBP and the LI demonstrate simi-
lar performance for oil–gas flow imaging, while the image recon-
structed by TR-GL presents more substantial distortion. The noise with
SNR lower than 50dB had a significant influence on the image quality
of these three selected algorithms.

The proposed virtual platform could model the dynamic behav-
ior of the real multiphase flows, making it a more persuasive assess-
ment approach compared with static simulation and phantom-based
experimental methods. Moreover, by conducting dynamic coupling
simulations, instantaneous ET and real images can be obtained simul-
taneously, creating favorable conditions for parameter optimization of
model-based ET image reconstruction algorithms and the generation
of closer-to-reality datasets for training learning-based algorithms in
multiphase flow imaging.

While the underlying coupled numerical model employed in
this work does not aim to investigate specific flow patterns, it
unlocks a robust and accurate approach to mapping permittivity/
conductivity signal into phase distribution, thus enabling a much-
needed yet unsolved method to extract real-time multiphase flow
features. This work offers as rigorous as possible a characterization
of the capability to reconstruct complex dynamic flow mixtures,
paving the way for accurate flow physics research and applications
in multiphase flows.
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