677 research outputs found

    Tri-Axis Receiver for Wireless Micro-Power Transmission

    Get PDF
    An innovative tri-axes micro-power receiver is proposed. The tri-axes micro-power receiver consists of two sets 3-D micro-solenoids and one set planar micro-coils in which iron core is embedded. The three sets of micro-coils are designed to be orthogonal to each other. Therefore, no matter which direction the flux is present along, the magnetic energy can be harvested and transformed into electric power. Not only dead space of receiving power is mostly reduced, but also transformation efficiency of electromagnetic energy to electric power can be efficiently raised. By employing commercial software, Ansoft Maxwell, the preliminary simulation results verify that the proposed micro-power receiver can efficiently pick up the energy transmitted by magnetic power source. As to the fabrication process, the isotropic etching technique is employed to micro-machine the inverse-trapezoid fillister so that the copper wire can be successfully electroplated. The adhesion between micro-coils and fillister is much enhanced

    Induction of protective immunity in swine by recombinant bamboo mosaic virus expressing foot-and-mouth disease virus epitopes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plant viruses can be employed as versatile vectors for the production of vaccines by expressing immunogenic epitopes on the surface of chimeric viral particles. Although several viruses, including tobacco mosaic virus, potato virus X and cowpea mosaic virus, have been developed as vectors, we aimed to develop a new viral vaccine delivery system, a bamboo mosaic virus (BaMV), that would carry larger transgene loads, and generate better immunity in the target animals with fewer adverse environmental effects.</p> <p>Methods</p> <p>We engineered the BaMV as a vaccine vector expressing the antigenic epitope(s) of the capsid protein VP1 of foot-and-mouth disease virus (FMDV). The recombinant BaMV plasmid (pBVP1) was constructed by replacing DNA encoding the 35 N-terminal amino acid residues of the BaMV coat protein with that encoding 37 amino acid residues (T<sup>128</sup>-N<sup>164</sup>) of FMDV VP1.</p> <p>Results</p> <p>The pBVP1 was able to infect host plants and to generate a chimeric virion BVP1 expressing VP1 epitopes in its coat protein. Inoculation of swine with BVP1 virions resulted in the production of anti-FMDV neutralizing antibodies. Real-time PCR analysis of peripheral blood mononuclear cells from the BVP1-immunized swine revealed that they produced VP1-specific IFN-γ. Furthermore, all BVP1-immunized swine were protected against FMDV challenge.</p> <p>Conclusion</p> <p>Chimeric BaMV virions that express partial sequence of FMDV VP1 can effectively induce not only humoral and cell-mediated immune responses but also full protection against FMDV in target animals. This BaMV-based vector technology may be applied to other vaccines that require correct expression of antigens on chimeric viral particles.</p

    Temporomandibular Joint Disorders in Patients with Rheumatoid Arthritis

    Get PDF
    BackgroundTemporomandibular joint disorders (TMD) are not uncommon in patients with rheumatoid arthritis (RA). However, the extent of involvement and its clinical relevance have not been well characterized. This study evaluated the correlation between the severity of RA-related TMD and RA, as well as determined the potential predictors for early identification and management of TMD in RA patients.MethodsWe sequentially recruited 56 adult RA patients from our Arthritis Clinic. TMD and RA were surveyed, clinically by questionnaires and physical examinations, and radiologically by tomography in TMD and conventional radiography in RA. The patients were stratified into no, mild and severe TMD groups according to the physical and tomographic examinations. The correlation of the severity of TMD and RA were evaluated. The relative importance of relevant predictors of severe TMD was analyzed by a logistic regression model.ResultsPhysical and radiologic temporomandibular joint abnormalities were found to be highly prevalent (85.7% and 74.5%) in these patients, and the occurrence increased to as much as 92.9% when the 2 data sets were combined. More than half of the patients had severe TMD presenting with debilitating symptoms or with a significant degree of bony destruction. The severity of TMD was variably correlated with RA severity. The score of hand-joint space narrowing was found to be the most influential predictor of severe TMD by logistic regression analysis.ConclusionThere was a high prevalence of TMD in RA patients. The severity of TMD variably correlated with RA severity. Clinically, a high score of hand-joint space narrowing may serve as an early indicator of RA patients at risk of severe TMD. This may facilitate early management and prevent the functional impairment of the temporomandibular joint

    Computational Framework for Optimal Carbon Taxes Based on Electric Supply Chain Considering Transmission Constraints and Losses

    Get PDF
    A modeling and computational framework is presented for the determination of optimal carbon taxes that apply to electric power plants in the context of electric power supply chain with consideration of transmission constraints and losses. In order to achieve this goal, a generalized electric power supply chain network equilibrium model is used. Under deregulation, there are several players in electrical market: generation companies, power suppliers, transmission service providers, and consumers. Each player in this model tries to maximize its own profit and competes with others in a noncooperative manner. The Nash equilibrium conditions of these players in this model form a finite-dimensional variational inequality problem (VIP). By solving this VIP via an extragradient method based on an interior point algorithm, the optimal carbon taxes of power plants can be determined. Numerical examples are provided to analyze the results of the presented modeling

    The Relationship between Ischemic Stroke Patients with and without Retroflex Tongue: A Retrospective Study

    Get PDF
    Background. Patients suffering from stroke exhibit different levels of capability in retroflex tongues, in our clinical observation. This study aims to derive the association of tongue retroflexibility with the degree of severity for stroke patients. Methods. All ischemic stroke patients were collected from August 2010 to July 2013 in the Stroke Center, Changhua Christian Hospital, Taiwan. All participants underwent medical history collection and clinical examination, including tongue images captured by ATDS. Statistical analysis was performed to compare the differences of ischemic stroke patients with and without retroflex tongue. Result. Among the total of 308 cases collected, 123 patients cannot retroflex their tongues, that is, the non-RT group. The length of stay in the non-RT group, 32.0 ± 21.5, was longer than those of the RT counterparts, 25.9 ± 14.4 (p value: 0.007). The NIHSS on admission, 14.1 ± 7.8 versus 8.9 ± 5.2, was higher and the Barthel Index upon admission, 18.6 ± 20.7 and 35.0 ± 24.2, was lower for the non-RT patients than that of the RT counterparts. Also, the non-RT patients account for 60.2% and 75.6% for Barthel Index ≤ 17 and NIHSS ≥ 9, respectively. Conclusion. The stroke patients in non-RT group showed significantly poor prognosis and were more serious in the degree of severity and level of autonomy than RT group, indicating that the ability to maneuver tongue retroflex can serve as a simple, reliable, and noninvasive means for the prognosis of ischemic stroke patients

    MG63 Osteoblast-Like Cells Exhibit Different Behavior when Grown on Electrospun Collagen Matrix versus Electrospun Gelatin Matrix

    Get PDF
    Electrospinning is a simple and efficient method of fabricating a non-woven polymeric nanofiber matrix. However, using fluorinated alcohols as a solvent for the electrospinning of proteins often results in protein denaturation. TEM and circular dichroism analysis indicated a massive loss of triple-helical collagen from an electrospun collagen (EC) matrix, and the random coils were similar to those found in gelatin. Nevertheless, from mechanical testing we found the Young's modulus and ultimate tensile stresses of EC matrices were significantly higher than electrospun gelatin (EG) matrices because matrix stiffness can affect many cell behaviors such as cell adhesion, proliferation and differentiation. We hypothesize that the difference of matrix stiffness between EC and EG will affect intracellular signaling through the mechano-transducers Rho kinase (ROCK) and focal adhesion kinase (FAK) and subsequently regulates the osteogenic phenotype of MG63 osteoblast-like cells. From the results, we found there was no significant difference between the EC and EG matrices with respect to either cell attachment or proliferation rate. However, the gene expression levels of OPN, type I collagen, ALP, and OCN were significantly higher in MG63 osteoblast-like cells grown on the EC than in those grown on the EG. In addition, the phosphorylation levels of Y397-FAK, ERK1/2, BSP, and OPN proteins, as well as ALP activity, were also higher on the EC than on the EG. We further inhibited ROCK activation with Y27632 during differentiation to investigate its effects on matrix-mediated osteogenic differentiation. Results showed the extent of mineralization was decreased with inhibition after induction. Moreover, there is no significant difference between EC and EG. From the results of the protein levels of phosphorylated Y397-FAK, ERK1/2, BSP and OPN, ALP activity and mineral deposition, we speculate that the mechanism that influences the osteogenic differentiation of MG63 osteoblast-like cells on EC and EG is matrix stiffness and via ROCK-FAK-ERK1/2
    corecore