1,203 research outputs found

    miRTar: an integrated system for identifying miRNA-target interactions in human

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are small non-coding RNA molecules that are ~22-nt-long sequences capable of suppressing protein synthesis. Previous research has suggested that miRNAs regulate 30% or more of the human protein-coding genes. The aim of this work is to consider various analyzing scenarios in the identification of miRNA-target interactions, as well as to provide an integrated system that will aid in facilitating investigation on the influence of miRNA targets by alternative splicing and the biological function of miRNAs in biological pathways.</p> <p>Results</p> <p>This work presents an integrated system, miRTar, which adopts various analyzing scenarios to identify putative miRNA target sites of the gene transcripts and elucidates the biological functions of miRNAs toward their targets in biological pathways. The system has three major features. First, the prediction system is able to consider various analyzing scenarios (1 miRNA:1 gene, 1:N, N:1, N:M, all miRNAs:N genes, and N miRNAs: genes involved in a pathway) to easily identify the regulatory relationships between interesting miRNAs and their targets, in 3'UTR, 5'UTR and coding regions. Second, miRTar can analyze and highlight a group of miRNA-regulated genes that participate in particular KEGG pathways to elucidate the biological roles of miRNAs in biological pathways. Third, miRTar can provide further information for elucidating the miRNA regulation, i.e., miRNA-target interactions, affected by alternative splicing.</p> <p>Conclusions</p> <p>In this work, we developed an integrated resource, miRTar, to enable biologists to easily identify the biological functions and regulatory relationships between a group of known/putative miRNAs and protein coding genes. miRTar is now available at <url>http://miRTar.mbc.nctu.edu.tw/</url>.</p

    Floating Point Arithmetic Protocols for Constructing Secure Data Analysis Application

    Get PDF
    AbstractA large variety of data mining and machine learning techniques are applied to a wide range of applications today. There- fore, there is a real need to develop technologies that allows data analysis while preserving the confidentiality of the data. Secure multi-party computation (SMC) protocols allows participants to cooperate on various computations while retaining the privacy of their own input data, which is an ideal solution to this issue. Although there is a number of frameworks developed in SMC to meet this challenge, but they are either tailored to perform only on specific tasks or provide very limited precision. In this paper, we have developed protocols for floating point arithmetic based on secure scalar product protocols, which is re- quired in many real world applications. Our protocols follow most of the IEEE-754 standard, supporting the four fundamental arithmetic operations, namely addition, subtraction, multiplication, and division. We will demonstrate the practicality of these protocols through performing various statistical calculations that is widely used in most data analysis tasks. Our experiments show the performance of our framework is both practical and promising

    miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes

    Get PDF
    Recent work has demonstrated that microRNAs (miRNAs) are involved in critical biological processes by suppressing the translation of coding genes. This work develops an integrated database, miRNAMap, to store the known miRNA genes, the putative miRNA genes, the known miRNA targets and the putative miRNA targets. The known miRNA genes in four mammalian genomes such as human, mouse, rat and dog are obtained from miRBase, and experimentally validated miRNA targets are identified in a survey of the literature. Putative miRNA precursors were identified by RNAz, which is a non-coding RNA prediction tool based on comparative sequence analysis. The mature miRNA of the putative miRNA genes is accurately determined using a machine learning approach, mmiRNA. Then, miRanda was applied to predict the miRNA targets within the conserved regions in 3′-UTR of the genes in the four mammalian genomes. The miRNAMap also provides the expression profiles of the known miRNAs, cross-species comparisons, gene annotations and cross-links to other biological databases. Both textual and graphical web interface are provided to facilitate the retrieval of data from the miRNAMap. The database is freely available at

    Paeoniae alba Radix Promotes Peripheral Nerve Regeneration

    Get PDF
    The present study provides in vitro and in vivo evaluation of Paeoniae alba Radix (PR) on peripheral nerve regeneration. In the in vitro study, we found the PR caused a marked enhancement of the nerve growth factor-mediated neurite outgrowth from PC12 cells as well as their expression of growth associated protein 43 and synapsin I. In the in vivo study, silicone rubber chambers filled with the PR water extract were used to bridge a 10-mm sciatic nerve defect in rats. At the conclusion of 8 weeks, regenerated nerves in the PR groups, especially at 1.25 mg ml−1 had a higher rate of successful regeneration across the wide gap, relatively larger mean values of total nerve area, myelinated axon count and blood vessel number, and a significantly larger nerve conductive velocity compared to the control group (P  <  .05). These results suggest that the PR extract can be a potential nerve growth-promoting factor, being salutary in aiding the growth of injured peripheral nerve

    miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes

    Get PDF
    Recent work has demonstrated that microRNAs (miRNAs) are involved in critical biological processes by suppressing the translation of coding genes. This work develops an integrated database, miRNAMap, to store the known miRNA genes, the putative miRNA genes, the known miRNA targets and the putative miRNAtargets. The knownmiRNAgenes in fourmammalian genomes such as human, mouse, rat and dog are obtained from miRBase, and experimentally validated miRNA targets are identified in a survey of the literature. Putative miRNA precursors were identified by RNAz, which is a non-coding RNA prediction tool based oncomparative sequence analysis. The mature miRNA of the putative miRNA genes is accurately determined using a machine learning approach, mmiRNA. Then, miRanda was applied to predict the miRNAtargets within the conserved regions in 30-UTR of the genes in the four mammalian genomes. The miRNAMap also provides the expression profiles of the known miRNAs, cross-species comparisons, gene annotations and cross-links to other biological databases. Both textual and graphical web interface are provided to facilitate the retrieval of data from the miRNAMap

    Induction of protective immunity in swine by recombinant bamboo mosaic virus expressing foot-and-mouth disease virus epitopes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plant viruses can be employed as versatile vectors for the production of vaccines by expressing immunogenic epitopes on the surface of chimeric viral particles. Although several viruses, including tobacco mosaic virus, potato virus X and cowpea mosaic virus, have been developed as vectors, we aimed to develop a new viral vaccine delivery system, a bamboo mosaic virus (BaMV), that would carry larger transgene loads, and generate better immunity in the target animals with fewer adverse environmental effects.</p> <p>Methods</p> <p>We engineered the BaMV as a vaccine vector expressing the antigenic epitope(s) of the capsid protein VP1 of foot-and-mouth disease virus (FMDV). The recombinant BaMV plasmid (pBVP1) was constructed by replacing DNA encoding the 35 N-terminal amino acid residues of the BaMV coat protein with that encoding 37 amino acid residues (T<sup>128</sup>-N<sup>164</sup>) of FMDV VP1.</p> <p>Results</p> <p>The pBVP1 was able to infect host plants and to generate a chimeric virion BVP1 expressing VP1 epitopes in its coat protein. Inoculation of swine with BVP1 virions resulted in the production of anti-FMDV neutralizing antibodies. Real-time PCR analysis of peripheral blood mononuclear cells from the BVP1-immunized swine revealed that they produced VP1-specific IFN-γ. Furthermore, all BVP1-immunized swine were protected against FMDV challenge.</p> <p>Conclusion</p> <p>Chimeric BaMV virions that express partial sequence of FMDV VP1 can effectively induce not only humoral and cell-mediated immune responses but also full protection against FMDV in target animals. This BaMV-based vector technology may be applied to other vaccines that require correct expression of antigens on chimeric viral particles.</p

    CircNet: a database of circular RNAs derived from transcriptome sequencing data

    Get PDF
    Circular RNAs (circRNAs) represent a new type of regulatory noncoding RNA that only recently has been identified and cataloged. Emerging evidence indicates that circRNAs exert a new layer of post-transcriptional regulation of gene expression. In this study, we utilized transcriptome sequencing datasets to systematically identify the expression of circRNAs (including known and newly identified ones by our pipeline) in 464 RNA-seq samples, and then constructed the CircNet database (http://circnet.mbc.nctu.edu.tw/) that provides the following resources: (i) novel circRNAs, (ii) integrated miRNA-target networks, (iii) expression profiles of circRNA isoforms, (iv) genomic annotations of circRNA isoforms (e.g. 282 948 exon positions), and (v) sequences of circRNA isoforms. The CircNet database is to our knowledge the first public database that provides tissue-specific circRNA expression profiles and circRNA–miRNA-gene regulatory networks. It not only extends the most up to date catalog of circRNAs but also provides a thorough expression analysis of both previously reported and novel circRNAs. Furthermore, it generates an integrated regulatory network that illustrates the regulation between circRNAs, miRNAs and genes

    Information theoretical analysis of two-party secret computation

    Get PDF
    Abstract. Privacy protection has become one of the most important issues in the information era. Consequently, many protocols have been developed to achieve the goal of accomplishing a computational task cooperatively without revealing the participants&apos; private data. Practical protocols, however, do not guarantee perfect privacy protection, as some degree of privacy leakage is allowed so that resources can be used efficiently, e.g., the number of random bits required and the computation time. A metric for measuring the degree of information leakage based on an information theoretical framework was proposed i

    miRTarBase: a database curates experimentally validated microRNA–target interactions

    Get PDF
    MicroRNAs (miRNAs), i.e. small non-coding RNA molecules (∼22 nt), can bind to one or more target sites on a gene transcript to negatively regulate protein expression, subsequently controlling many cellular mechanisms. A current and curated collection of miRNA–target interactions (MTIs) with experimental support is essential to thoroughly elucidating miRNA functions under different conditions and in different species. As a database, miRTarBase has accumulated more than 3500 MTIs by manually surveying pertinent literature after data mining of the text systematically to filter research articles related to functional studies of miRNAs. Generally, the collected MTIs are validated experimentally by reporter assays, western blot, or microarray experiments with overexpression or knockdown of miRNAs. miRTarBase curates 3576 experimentally verified MTIs between 657 miRNAs and 2297 target genes among 17 species. miRTarBase contains the largest amount of validated MTIs by comparing with other similar, previously developed databases. The MTIs collected in the miRTarBase can also provide a large amount of positive samples to develop computational methods capable of identifying miRNA–target interactions. miRTarBase is now available on http://miRTarBase.mbc.nctu.edu.tw/, and is updated frequently by continuously surveying research articles
    corecore