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Abstract. Privacy protection has become one of the most important
issues in the information era. Consequently, many protocols have been
developed to achieve the goal of accomplishing a computational task co-
operatively without revealing the participants’ private data. Practical
protocols, however, do not guarantee perfect privacy protection, as some
degree of privacy leakage is allowed so that resources can be used effi-
ciently, e.g., the number of random bits required and the computation
time. A metric for measuring the degree of information leakage based
on an information theoretical framework was proposed in [2]. Based on
that formal framework, we present a lower bound of the scalar product
problem in this paper, and show that to solve the problem without the
help of a third party, approximately half the private information must
be revealed. To better capture our intuition about the secrecy of various
protocols, we propose two more measurements: evenness and spread. The
first measures how evenly the information leakage is distributed among
the participants’ private inputs. The second measures the size of the
smallest set an adversary could use to obtain the same ratio of leaked
information that could be derived in the worst case scenario.
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1 Introduction

Privacy protection is one of the most pressing issues in the information era. The
massive databases spread over the Internet are gold mines for some and, at the
same time, one of the greatest threats to privacy for others. How to accomplish
a computational task cooperatively without revealing the participants’ private
inputs has therefore gained a great deal of attention in recent years and the
development of efficient solutions is now an active research area. In theory [11,
7], it is possible to securely compute almost any function without revealing
anything, except the output. Unfortunately, the theoretical results are not readily
applicable to real applications due to their high computational complexity.

Most theoretical approaches adopt a computationally indistinguishable view
of secrecy and try to find provable secure solutions, but such a definition leaves
little room to quantify secrecy. Meanwhile, in application-oriented studies, re-
searchers usually take an intuitive approach to the definition of secrecy and try
to argue for the secrecy of protocols by refuting possible attacks. There is a gap
between these two approaches in terms of provable secrecy. Although, privacy is
a basic human right, it is not the only one. When multi-party private compu-
tation is applied in the public sector, sometimes privacy must be compromised
in order to accommodate other important social values. The computation can
also be applied in the private sector, such as in a business setting. For example,
two (or more) companies might want to compute a function cooperatively; how-
ever, neither of them wants to share their private information. In both public
and private sector applications, it would be beneficial to be able to quantify
secrecy so that a tradeoff could be made, for example, between secrecy and com-
putational efficiency. In [5], similar arguments are presented about ideal secrecy
and acceptable secrecy. Meanwhile in [2], an information theoretical framework
is proposed and two quantitative definitions of secrecy for multi-party private
computation are defined, namely, relative secrecy and absolute secrecy. In this
paper, we prove a lower bound for the relative secrecy of protocols that solve
scalar product problems. We also propose two refined measurements, evenness
and spread, for quantifying information leakage by multiparty private computa-
tion protocols.

The remainder of this paper is organized as follows. We give a short review
of related works in Section 2. In Section 3, we present the formal framework
proposed in [2]. In Section 4, we present our lower bound proof. In Section 5,
we present our extension of the formal framework, and use three examples to
explain our new measurements. Finally, in Section 6, we present our conclusions
and a short discussion about possible extensions of our model. We also indicate
the direction of future work.

2 Related Work

Secure two-party computation was first studied by Yao [11] and extended to the
multi-party case by Goldreich et al [7]. Through a sequence of efforts, a satis-
factory definitional treatment was found and precise proofs for the security of
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multi-party computation were devised . A full description of these developments
is given in [6]. The general construction approach is as follows. To securely com-
pute a function, it is first converted into a combinatorial circuit. Next, all the
parties run a protocol to compute the result of each gate in the circuit. Both
the input and the output of each gate are shared randomly and the final output
is also shared randomly among all parties, who then exchange their share of
information to compute the final result. Although, this general construction is
impressive, it also implies that both the size of the circuit and the number of
parties involved dominate the size, i.e., complexity, of the protocol. Note that
the size of the circuit is related to the size of the input. Therefore, this general
construction is not feasible for real world applications with a large input and/or
a large number of parties [9].

The high cost of the general approach for large problems has motivated re-
searchers to look for efficient solutions for specific functions, and many protocols
have been developed to solve particular problems. There are specific protocols
for general computation primitives, such as, scalar products [1, 10], set union
and set intersection cardinality [8], and private permutation [3]. In addition,
there are protocols for specific application domains, for example, data mining,
computational geometry, and statistical analysis. An excellent survey of secure
multi-party computation problems can be found in [4].

Most of the above approaches are based on the notion of ideal secrecy, as
observed in [5]. In that paper, the authors ask if it would be possible to lower
the security requirement from an ideal level to an acceptable level so that an
efficient protocol can be developed. A formal framework based on information
theory is presented in [2] in which quantitative metrics of the security level of a
protocol are proposed.

3 Framework

As our lower bound proof is based on the formal framework in [2], we include a
brief introduction to the framework here. In multi-party private computation, n
players cooperate to compute a function. Each player holds some private input
that is part of the parameters for computing the function. The goal is to compute
the function and maintain the secrecy of each party’s private input. Given a
protocol, P , we use XP

i to denote the private input of party i, and msgP
i to

denote the message received by party i. We use information theory to model the
amount of information revealed after running P . Note that before running P ,
none of the parties has any information about the other parties’ private inputs.
However, after running P , each party may know something about some of the
other parties’ private inputs because of new information gathered during the
execution of P . Let HP

i = H(XP
i ) denote the entropy of the random variable

XP
i , and HP

ij = H(XP
i |msgP

j ) denote the entropy of the random variable XP
i

given msgP
j . The conditional entropy corresponds to the intuitive idea of the

amount of information (uncertainty) of XP
i from party j’s perspective after

receiving msgP
j .
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Two measurements, relative secrecy and absolute secrecy, of the secrecy of
protocol P are defined as mini,j(HP

ij/HP
i ) and mini,j(HP

ij ) respectively.

4 Lower Bound

In this section we show that for any two party scalar product protocol, the
relative secrecy can not be better than 1

2 . Without loss of generality, let us
assume that the protocol proceeds in rounds, where Alice and Bob send mes-
sages to each other alternately, with Alice sending the first message. We can
record the communication between Alice and Bob as a sequence of messages,
msg = (msgA

1 , msgB
2 , . . .). Given a message sequence msg, we say that an in-

put sequence X of Alice(Bob) is compatible with msg if it is a possible record
of the communication when the input sequence of Alice(Bob) is X. We use
IA(msg)(IB(msg)) to denote the set of input sequences, that are compatible
with msg, for Alice(Bob). Note that msg is a possible record of the communica-
tion when Alice’s input is in IA(msg) and Bob’s in IB(msg). We use IA,B(msg)
to denote {(X,Y )|X ∈ IA(msg), Y ∈ IB(msg)}. The set IA(msg)(IB(msg)) can
be further partitioned into two subsets according to the output value u(v). We
use IA,u(msg)(IB,v(msg)) to denote the set of input sequences compatible with
msg and the final outcome. Note that, for all X ∈ IA,u(msg) and Y ∈ IB,v(msg),
XY = u + v. Here, we consider the case where each number is from GF (2) and
the input vector is n dimensional. A general lower bound can be derived by the
same approach. Below, we present a high-level sketch of the lower bound proof.
If after the execution of the protocol, the information content of the input se-
quence of Alice(Bob) is still high, it means that many input sequences should
be compatible with the recorded conversation. However, a larger IA(msg) would
imply a smaller IB(msg), since each sequence in IB(msg) paired with each se-
quence in IA(msg) has to satisfy the condition that their scalar product is equal
to the sum of their outputs. We therefore derive a lower bound. To formalize
the above sketch, we state some basic facts from information theory and linear
algebra.

Fact 1
Let X be a random source with n possible outcomes, H(X) ≤ log n. In other
words, for a random source to have entropy n, we need at least 2n possible out-
comes.

Fact 2 Let I1, I2 be two sets of n-dimensional binary vectors. We use dim(I1)
to denote the dimension of the subspace spanned by I1.

– If |I1| ≥ 2k, then dim(I1) ≥ k; and if dim(I) ≤ k, then |I| ≤ 2k.
– If I1 and I2 are orthogonal, i.e., the scalar product between every vector in

I1 and I2 is zero, then dim(I1) + dim(I2) ≤ n.

Given a message sequence msg, let 0A = IA,0(msg), 0B = IB,0(msg), 1A =
IA,1(msg), and 1B = IB,1(msg). By Fact 2, we get dim(0A) + dim(0B) ≤ n
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and dim(1A) + dim(1B) ≤ n. Now consider the relationship between 1A and
0B. Assume that dim(1A) = k and (i1, i2, . . . , ik) form a basis of the subspace
spanned by 1A. Consider the set of vectors constructed by combining an even
number of vectors in the basis, denoted by I ′. There are exactly 2k−1−1 vectors
in the set, because the summations of the even terms and odd terms of a binomial
sequence are the same. However, the zero vector is not included in our subset.
Clearly dim(I ′) ≥ k − 1 and the space spanned by 1A contains both vectors in
1A and I ′. Using Fact 2 again, but this time for I ′ and 0B, we get dim(I ′) +
dim(0B) ≤ n, which implies dim(1A) + dim(0B) ≤ n + 1. If H(XA|msg) ≥
k1, then by Fact 1, |IA(msg)| ≥ 2k1 . Without loss of generality, assume that
|1A| ≥ 2k1−1; therefore, dim(1A) ≥ k1 − 1. Since |I ′| ≥ |1A| − 1 and the
the number of vectors in the space spanned by 1A contains every vector in
I ′ and 1A, we derive that there are at least |I ′| + |1A| ≥ 2k1 − 1 vectors in
this space. Therefore, dim(1A) ≥ k1. Hence, by dim(1A) + dim(1B) ≤ n and
dim(1A) + dim(0B) ≤ n + 1, we get dim(1B) ≤ n − k1 and dim(0B) ≤ n −
k1 + 1. There are at most 2n−k1+1 vectors in the vector space spanned by 0B.
However, half the vectors in this space are not in 0B, so we get |0B| ≤ 2n−k1 ;
therefore, |IB(msg)| = |0B|+ |1B|LIA ≤ 2n−k1+1. If H(XB |msg) ≥ k2, then by
Fact 1, |IB(msg)| ≥ 2k2 . Now we have 2k2 ≤ |IB(msg)| ≤ 2n−k1+1. Thus, we get
k1 + k2 ≤ n + 1 and the following lemma and theorem.

Lemma 1 For any two-party scalar product protocol P , if H(XA|msg) ≥ k1

and H(XB |msg) ≥ k2, then k1 + k2 ≤ n + 1.

Since H(XA) = H(XB) = n, we get H(XA|msg)/H(HA)+H(XB |msg)/H(XB) ≤
1 + 1/n. The relative secrecy of the protocol is

min(
H(XA|msg)

H(XA)
,
H(XB |msg)

H(XB)
) ≤ 1

2
+

1
n

.

Theorem 1 For any two-party scalar product protocol, the relative secrecy is at
most 1

2 + Ω( 1
n ).

5 Extension of the formal framework and examples

Although the two metrics, relative secrecy and absolute secrecy, capture the
amount of information revealed by a protocol, they fail to distinguish intuitively
apparent differences between various protocols. For example, many two-party
scalar product protocols have a relative secrecy of 1

2 , but, it is obvious that a
protocol that allows Alice and Bob to send half of their respective inputs to
each other is not acceptable. We try to capture the intuition by extending the
definition of the secrecy metrics. First we introduce the concept of evenness to
overcome the drawback of the above-mentioned measurements, which only cap-
ture a global view of information leakage. Now consider two protocols, each with
relative secrecy 1

2 . In the first protocol, the amount of information leakage only
reaches 1

2 when all the input elements are considered. In the other protocol,
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however, the information leakage reaches 1
2 when only a single input element is

considered. Clearly, the first protocol is better than the second. We introduce
the concept of spread to capture the intuition that the first protocol is better.
Before we formally define evenness and spread, we introduce some notations.
We present only the two-party case here, and defer the multi-party case to a
full paper. Let us first generalize the definition of HP

i and HP
ij to any subset of

input elements. Let A and B denote the two parties. For player A(the definition
for party B is similar), let XP

A = (x1, x2, . . . , xn), and S = {xk1 , xk2 , . . . , xkr
} ⊆

{x1, x2, . . . , xn}. We use H(S) to denote H(xk1 , xk2 , . . . , xkr
) and H(S|msg)

to denote H(xk1 , xk2 , . . . , xkr |msg). Define HP
A (S) = H(S) and HP

AB(S) =

H(S|msgP
B). Let rA = r = minS{H(S|msgP

B)
H(S) }, rgA = H(XP

A |msgP
B)

H(XP
A )

, and ηA =
rgA − rA. In the above definitions, rA is the minimum ratio between the infor-
mation of any subset of the secret input before and after the execution of the
protocol, rgA is the ratio for the whole input. It is reasonable to replace rgA

by rA; however, we feel it is more informative to define evenness to be ηA, and
interpret it as the measurement of the evenness of information leakage about
player A. When ηA equals zero, it means that player A’s input is leaked evenly.
We define the spread for player A as min{|S| : {H(S|msgP

B)
H(S) } = rA}; that is, the

minimum number of input elements required to reach the maximum information
leakage level. An ideal protocol should have relative secrecy as close to one as
possible, evenness of every player as close to zero as possible, and spread of every
player as large as possible. We use three two-party scalar product protocols to
demonstrate the concept of evenness and spread. In the two-party scalar product
problem, the two parties, Alice and Bob, have private input XA and XB(two n
dimensional vectors), respectively. A solution to this problem is a protocol that,
after running, enables Alice and Bob to correctly compute the numbers u and v
respectively, such that u + v is the inner product of XA and XB , i.e., XA ·XB .
Let ∗ be the matrix product operator, and XT

B be the transpose of XB . Then,
u + v = XA · XB = XA ∗ XT

B . Hereafter, we assume that XA, XB ∈ GF (p)n,
where GF (p) is a Galois field of order p, and p is a prime number. We also
assume that XA and XB are uniformly distributed and that both parties are
semi-honest, i.e., they both follow the protocol and do not deliberately deviate
from it to get more information. Instead, they only deduce information from the
messages they receive.

Examples

Our first example is a naive protocol whereby Alice sends the first half of her
vector to Bob, and Bob sends the second half of his vector to Alice. It is obvious
that relative secrecy rg = 1

2 , which matches the best protocol. However, it is
also obvious that this is not a very appealing solution, because the evenness of
this protocol is 1

2 . Thus one party has full information of half the private input
elements. In addition, the fact that the spread is equal to one makes the situation
even worse.
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For the second protocol, we use the Chinese Remainder theorem to encode
each element of the input vectors with the same base. Specifically, we pick
two consecutive integers, p1, p2, such that p1p2 > p and encode each num-
ber x as (x mod p1, x mod p2). Thus, XA = ((x11, x12), . . . , (xn1, xn2)) and
XB = ((y11, y12), . . . , (yn1, yn2)). Alice then sends the first coordinate of her pri-
vate input, (x11, x21, . . . , xn1), to Bob and Bob sends the second coordinate of
his private input, (y12, y22, . . . , yn2), to Alice. Alice computes a =

∑n
i=1 xi2yi2

mod p2, and set u = p1p
−1
1 a; and Bob computes b =

∑n
i=1 xi1yi1 mod p1, and

set v = p1p
−1
1 b, where p1p

−1
1 = 1 mod p2 and p2p

−1
2 = 1 mod p1. It is easy to

see that the relative secrecy of the protocol is again 1
2 , but this time the evenness

is 0, since half of the information of each private input element is revealed to
the other party. However, the spread of the protocol is 1; for example, once Bob
gets x11 the information about x1 is reduced to about 1

2 .
The third protocol [5] operates as follows. First Alice and Bob agree to an

n ∗n invertible matrix M and a positive integer k that is not larger than n. The
rest of the protocol comprises the following steps:

Alice Bob
1. Compute X ′

A = XA ∗M . Compute X ′
B = (M−1 ∗XT

B)T .
Let X ′

A = [xA1 , . . . , xAn ], Let X ′
B = [xB1 , . . . , xBn ],

X̄A = [xA1 , . . . , xAk
], X̄B = [xB1 , . . . , xBk

],
X
¯A=[xAk+1 , . . . , xAn ] X

¯B = [xBk+1 , . . . , xBn ]

2. Alice
X̄A−→ Bob

Alice
X
¯ B←− Bob

3. u = X
¯A ∗X

¯
T
B v = X̄A ∗ X̄T

B

In this protocol, M is an n by n invertible matrix. Without loss of generality,
let S = {xA1 , xA2 , ..., xAr} and T = {xAr+1 , ..., xAn}. H(S) = r ∗ log p. Let
msg = {msg1,msg2, ..., msgn}. We have the following linear system of equations
from Bob’s perspective:




a11 ∗ xA1 + a12 ∗ xA2 + · · ·+ a1r ∗ xAr + · · ·+ a1n ∗ xAn = msg1

a21 ∗ xA1 + a22 ∗ xA2 + · · ·+ a2r ∗ xAr + · · ·+ a2n ∗ xAn = msg2

...............
ak1 ∗ xA1 + ak2 ∗ xA2 + · · ·+ akr ∗ xAr + · · ·+ akn ∗ xAn = msgk

H(S, T |msg) = (n−k) log p. Moreover, H(S, T |msg) = H(S|msg)+H(T |S, msg) =
H(S|msg)+maxS{(n−r−k), 0}∗log p. If r ≤ n−k, H(S|msg)

H(S) = r∗log p
r∗log p = 1. Oth-

erwise, H(S|msg)
H(S) = (n−k)∗log p

r∗log p = n−k
r < 1. Therefore, minS{H(S|msg)

H(S) } = n−k
n ,

where |S| = r = n. The relative secrecy for Alice’s input is n−k
n . The evenness is

thus n−k
n − n−k

n = 0, and the spread is n. For Bob’s input, the relative secrecy
is now k

n , however, the evenness and spread are the same as for Alice.

6 Conclusion and Future Works

In this paper, by proving a lower bound, we show that revealing half of the
private information is unavoidable in two-party protocols that solve the scalar
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product problem by only allowing the two parties to communicate with each
other. Although this seems intuitively straightforward, proving the claim with-
out the help of an information theoretical formalism is non-trivial. Our lower
bound proof not only confirms our intuition, but also demonstrates the advan-
tage of the information theoretical framework. To better capture our intuition,
we also propose refinements and extensions of the measurements of information
leakage for two-party secure computation. We hope that analyzing protocols for-
mally will not only provide solid certification of the secrecy of existing protocols,
but also facilitate the design of better protocols. Using the Chinese Remainder
theorem to design protocols is an interesting approach worthy of further investi-
gation. In this paper, we assume that inputs are uniformly distributed. We feel
it would be a very interesting and challenging task to develop a method that
incorporates players’ a priori information about others players’ private inputs
into the formalism. Finally, and obviously, extending the model to multi-party
situations and analyzing some interesting problems is logically the next step.
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