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ABSTRACT

Circular RNAs (circRNAs) represent a new type of
regulatory noncoding RNA that only recently has
been identified and cataloged. Emerging evidence
indicates that circRNAs exert a new layer of post-
transcriptional regulation of gene expression. In
this study, we utilized transcriptome sequencing
datasets to systematically identify the expression
of circRNAs (including known and newly identified
ones by our pipeline) in 464 RNA-seq samples, and
then constructed the CircNet database (http://circnet.
mbc.nctu.edu.tw/) that provides the following re-
sources: (i) novel circRNAs, (ii) integrated miRNA-
target networks, (iii) expression profiles of circRNA
isoforms, (iv) genomic annotations of circRNA iso-
forms (e.g. 282 948 exon positions), and (v) se-
quences of circRNA isoforms. The CircNet database
is to our knowledge the first public database that
provides tissue-specific circRNA expression profiles
and circRNA–miRNA-gene regulatory networks. It
not only extends the most up to date catalog of circR-
NAs but also provides a thorough expression analy-
sis of both previously reported and novel circRNAs.
Furthermore, it generates an integrated regulatory
network that illustrates the regulation between cir-
cRNAs, miRNAs and genes.

INTRODUCTION

Circular RNAs (circRNAs) are a family of RNAs whose
head 3′ and tail 5′ ends covalently bond together to re-
sult in a circular form. Identified more than thirty years
ago, circRNAs were first hypothesized to be relics of pre-
cellular evolution (1) with the phenomenon of the 3′ and 5′
ends covalently joining called ‘exon scramble’ (2) or ‘back-
spliced junctions’. In plant cells, circRNAs were known to
be pathogenic and deemed viroid (3,4). In contrast, circR-
NAs found expressed in mammal cells (5–8) were generally
considered to be rare products of splicing error.

In recent years, high throughput sequencing technology
has dramatically expanded the scope of transcriptomics re-
search (9) and made it possible to more accurately inves-
tigate the expression of non-coding RNA genes. In 2012,
Salzman et al. (10,11) developed an algorithm to detect
scrambled exons in RNA-seq datasets, and reported that
circular RNA isoforms are actually predominant in many
human gene isoforms. By 2013, Memczak et al. (12) de-
veloped an improved version of the algorithm and found
that some circRNAs serve as natural microRNA ‘sponges’.
The reliability of the back-splicing junction detection al-
gorithm can be validated through a protocol developed
by Jeck et al. (13), which includes examining RNA-seq
samples treated with RNase R (14). For instance, a cir-
cRNA named CDR1as (15) expressed in human and mouse
brain was shown to negatively regulate miR-7 in a post-
transcriptional manner (12,15,16); this mechanism appears
to be evolutionarily conserved (12). Extended identifica-
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tion of circRNAs in mouse (17), fly (18) and other ani-
mals (19) suggests that circRNA ubiquity is evolutionally-
conserved. Further evidence indicates that human circRNA
expression exhibits tissue specificity, and now tens of thou-
sands of circRNAs have been found and reported across
human tissues (17,20–25). CircRNAs functional correlation
with brain function, synaptic plasticity (26,27) and fetal de-
velopment (28) has recently been reported. The fact that
cell free circRNAs were found stable in saliva (29) as well
as exosomes (30) makes circRNA a promising diagnosis
biomarker.

Given the emerging understanding of the biological im-
portance of circRNAs and research efforts to understand
them, we constructed a database called CircNet to extend
the catalog of reported circRNAs and provide resources
to aid in their study. Previously reported and newly iden-
tified human circRNAs are cataloged, with CircRNA ex-
pression metadata in the form of a heatmap illustrating cir-
cRNA expression profiles across 464 human transcriptome
samples additionally provided. Embracing the idea that cir-
cRNAs are enriched with conserved miRNA binding sites
(31) and function as natural miRNA sponges (12), CircNet
maps circRNA–miRNA–mRNA interactions into regula-
tory networks. An integrated genome browser illustrates the
position of circRNAs in the human genome, and relative
locations of repeat sequences are presented to address the
issue of circRNA biogenesis as the biogenesis of circRNAs
correlates to repeats in the flanking area (13,32). A provided
search function enables the exploration of CircNet. Users
can choose an interested gene or miRNA to access its asso-
ciated network, expression profile, and genome position si-
multaneously in CircNet. Overall, CircNet provides interac-
tive tools for users to easily access comprehensive informa-
tion regarding expression profiles across many conditions,
genome loci, close repeat sequences, post-transcription reg-
ulation networks, and references to previous studies for cir-
cRNAs.

DATA COLLECTION AND DATABASE CONTENT

CircNet’s data collection, cataloguing and analysis are sum-
marized in Figure 1. The process started from identifying
back-spliced junction sites in the collected datasets to find
a total of 212 950 circRNAs, including 53 687 novel RNAs.
From them, we defined 34 000 high-confidence circRNAs
by selecting back-spliced junction sites with supporting ex-
periments ≥3. To associate circRNA isoforms with miR-
NAs, mature human miRNA sequences and experimen-
tally verified miRNA target genes were acquired from miR-
Base (33) and miRTarBase (34). Perfect alignments of 6mer,
7mer-A1, 7mer-m8 and 8mer lengths between miRNA tar-
get seeds and circRNA isoforms were collected in CircNet,
where 6mer represents the match of position 2 to 7; 7mer-A1
represents a 6mer alignment plus one A in position 1; 7mer-
m8 represents a matched from position 2 to 8; and 8mer
represents match of all 1 to 8 position (35). Appearance fre-
quency of these miRNA target sites were normalized by iso-
form length. From the distribution of this frequency across
all transcripts, including linear isoforms of the genes, only
those isoforms with a P value less than 0.001 are reported
to sponge miRNA in CircNet.

Data collection

Reported human back-spliced junction sites were also col-
lected from the supplemental information provided in other
work (10–13,20–25,27). In addition, 464 RNA-seq samples
were collected from a wide range of independent experi-
ments across 26 human tissues and 104 disease conditions
from the NCBI Sequence Read Archive (36). These sam-
ples cover research topics ranging from detecting gene vari-
ation (37–41) to searching for long non-coding RNAs (42).
Datasets used in recent publications (17,20–25) regarding
circRNA identification were also included. CircRNA back-
spliced junction sites were identified within these samples.
To acquire the expression patterns of circRNAs within these
samples, we designed a pipeline to perform expression pro-
filing.

CircRNA identification

CircRNA back-spliced junction sites in the collected
datasets were identified using the algorithm proposed by
Memczak et al. (16), which has also been used by the cir-
cBase database to detect back-spliced junction sites (43). As
shown in Figure 1, reads spanning junction sites that can-
not be fully aligned onto the reference genome were ana-
lyzed to identify back-spliced junction sites. Junction sites
meeting the same threshold criteria in Memczak et al. (16)
were cataloged in CircNet.

To acquire the full length nucleotide sequence from
RNA-seq reads, back-spliced junction sites were compared
with the hg19 human genome annotation as obtained from
UCSC genome browser (44). Given recent research, we rec-
ognized that multiple circRNA isoforms might originate
from the same back-spliced junction site (11,26). Based on
the method proposed by Salzman et al. (11), we identified
multiple circRNA isoforms with annotated transcripts if the
‘head’ and ‘tail’ positions of a detected back-spliced junc-
tion were located exactly at the position of the exon junc-
tion sites belonging to the same annotated transcripts. Since
back-spliced junction site flanking exons could potentially
be composed of multiple isoforms, we included all the pos-
sible isoforms in the annotation for the expression analysis
and miRNA target search. In addition, we found many re-
ported and novel back-spliced junction sites that did not
align exactly to well-annotated exon locations. For those
circRNAs associated with these back-spliced junction sites
having small misalignments to exon locations, flanked exons
and a small portion of intron sequence were considered as
parts of the isoforms. Still other junction sites were found
to be located in intergenic positions while others, despite
overlapping with certain genes, localized to their antisense
strands. For these circRNAs with no apparent flanked ex-
ons, we took the entire flanked sequence between the ‘head’
and ‘tail’ position of the back-spliced junction sites for ex-
pression analysis and miRNA target search. Given the pos-
sibility of flanking intron areas as part of the circRNAs as
described in Gao et al. (20), we took the full flanked se-
quences into consideration for expression and miRNA tar-
get search. The process is illustrated in Supplementary Fig-
ure S1. Expression profiling was performed through inte-
grating the tool Cufflinks (45,46) with STAR (47). Expres-
sion level of the isoforms can also be estimated through
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Figure 1. Framework of the database construction in CircNet. The graph illustrates how the network in CircNet was constructed. For circRNA identifica-
tion, transcriptome sequencing data sets were obtained from the NCBI Sequence Read Archive (SRA). The back-spliced junction sites in each RNA-seq
sample were identified using a circRNA discovery pipeline we developed (scripts provided on circBase). Detected back-spliced junction sites were further
compared with hg19 human genome annotation to define circRNA isoforms. Only isoforms with an average expression level (those with an average FPKM
in the 464 examined samples greater than 0.01) were included in the database. To predict circRNA–miRNA interactions, the occurrence of miRNA target
seeds in circRNA isoforms were examined and normalized by isoform length. The significance of interactions was evaluated by referring to the background
distribution of miRNA seeds in all transcripts and only circRNA–miRNA interactions with P-values < 0.001 were reported.

FPKM (Fragments Per Kilobase of exon per Million frag-
ments mapped) values during the process.

The newly identified circRNAs were named by following
the nomenclature suggested by Jeck et al. (48). The ID of a
circRNA specifies the gene symbol of the source gene. If the
back-spliced junction site is not exactly aligned with anno-
tated exons, an ‘overlap’ tag is included in the ID. Similar
tags suggesting that the circRNA is antisense to the origin
gene are included in the ID for the applicable circRNAs.

MicroRNA sponge detection

Potential miRNA binding sites on circRNAs were iden-
tified through iteratively searching the circRNA isoform
sequences for miRNA target sequences deemed typical:
6mer, 7mer-A1, 7mer-m8 and 8mer sequences (35). Per-
fect complementarity was required of these sequences for
a circRNA–miRNA target relationship to be identified. To
normalize the number of occurrences of these sites, the be-

low formula was used:

Frequency of Nmer = Number of target seeds × 1000
N × Length of CircRNA

With this formula, four frequency numbers can be acquired
from each pair of circRNA and miRNA. To distinguish cir-
cRNA from linear isoforms, frequency values were also cal-
culated for linear mRNA and miRNA pairs. P-values for
each circRNA and miRNA relationship were acquired by
one minus the calculated the culminated distribution func-
tion of the frequency Z score. The circRNA–miRNA pair
with P-value < 0.001 represents high regulatory potential
between the circRNA and miRNA. Information of these
regulatory relationships was combined with target genes
of miRNA from miRTarBase (34) to form the networks
demonstrated on CircNet.

WEB INTERFACE

The web interface of CircNet is summarized in Figure 2.
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Figure 2. Overview of CircNet web interface. (A) Users can search a gene or miRNA of interest, and then CircNet generates three panels as follows: (1)
the left panel: a gene–circRNA–miRNA regulatory network, (2) the top-right panel: circRNA expression profiles, circRNA–miRNA sponge regulatory
network and resource of back-spliced junction sites; (3) the bottom-right panel: a genome browser for circRNAs. (B) When users click a circRNA in the
left panel, CircNet shows a circRNA–gene–miRNA regulatory network centered on the given circRNA. (C) Using BLAST, users can input a DNA or
RNA sequence to search for circRNA isoforms included in CircNet.

The main page of CircNet is composed of three panels and
a search box (top left). With the search box, users iden-
tify a gene or miRNA of interest to first find its associated
gene–miRNA-circRNA regulatory network (left panel). If a
gene is queried, this identifies the post-transcriptional regu-
latory relationships of (i) miRNAs targeting the given gene
and (ii) circRNAs originating from within the given gene.
If instead a miRNA is searched for, circRNAs predicted
to serve as sponges of the given miRNA are summarized
in the network. Clicking on a circRNA within the network
view re-centers the network on the selection (Figure 2C).
To change the degree of stringency of predicted relation-
ships, the ‘Support’ drop down menu in the top left corner
allows users to restrict the view to only high-confidence cir-
cRNAs, with confidence based on having back-spliced junc-
tion sites found in multiple studies or been found to pass the
thresholds defined Memczak et al. (16) in multiple RNA-
seq experiments. In the default setting, only those circRNAs
whose back-spliced junction sites found in three or more
sources are shown.

The top-right panel consists of three sub-categories:
‘Expression’, ‘Sponge’ and ‘Site Source’. These categories
change simultaneously when the user clicks on one of the
circRNA nodes on the network in the left panel. In the ‘Ex-
pression’ tab, a heat map of the expression profile for all the
circRNAs as well as overlapped linear transcripts illustrated
on the network across all 464 RNA-seq samples is demon-
strated. In the ‘Sponge’ tab, an extended network focused
on the selected circRNA, all miRNAs sponged by the se-
lected circRNA, and their associated target genes is shown.
An example of this kind of extended network is illustrated
in Figure 2B. In the ‘Site Source’ tab, a table shows exper-
iments in which multiple back-spliced junction site reads
were found. Links to the peer-reviewed source reports of
the junction sites can also be found in this table; the longer
the list, the stronger the evidence supporting the existence
of this back-spliced junction site.

The bottom-right panel synchronizes with the user search
query to generate a genome browser view localizing to the
search target. The browser currently contains three tracks:
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(i) Reference sequence: the Hg19 human genome sequence,
(ii) HG19 repeats: any repeat sequences on Hg19 human
genome sequence for the searched subject; and (iii) CircR-
NAs: all circRNAs as well as overlapped linear transcripts
around the selected area.

Sequence search is also available on CircNet (Figure 2C).
Through integrated BLAST, users can search for all cir-
cRNAs that align with input nucleotide sequences. Back-
spliced junction sites overlapped with only intergenic re-
gions can also be accessed through this function.

EXAMPLE APPLICATIONS

We use the ZEB1-derived network as an example to illus-
trate the information provided by CircNet (Supplementary
Figure S2). When ZEB1 is inputted as the keyword, Circ-
Net collects available information about miRNAs targeting
ZEB1, circRNAs originating from the ZEB1 sequence, and
the regulatory relationship between the circRNAs and miR-
NAs to create in an integrated mRNA-miRNA-circRNA
regulatory network. The network suggests that the circR-
NAs circ-ZEB1.5, circ-ZEB1.19, circ-ZEB1.17 and circ-
ZEB1.33 have the potential to sponge the miRNA miR-
200a-3p. Since miR200a has been reported to target ZEB1
(34), this suggests the existence of a negative feedback con-
trol loop. The integrated genome browser provides the vi-
sualization of these circRNAs: all these circRNAs contain
the exon in position chr10:31791276–31791437, which is
enriched with miR-200a targeting seeds. From the flank-
ing area of this specific exon, we found the flanking MIR
repeat sequences MIR dup1543 and MIR3 dup768 and
MIR3 dup769, providing a lead to the biogenesis of the
circRNA. As illustrated in Supplementary Figure S3, ex-
pression patterns provided in CircNet indicate that all four
identified circRNAs –– circ-ZEB1.5, circ-ZEB1.19, circ-
ZEB1.17 and circ-ZEB1.33 –– were up-regulated in avail-
able normal lung tissue samples compared to the lung can-
cer samples.

DISCUSSION AND FUTURE DEVELOPMENT

Regarding other circRNA databases, Glazar et al. con-
structed circBase (http://circbase.org/) (43), and Li et al.
constructed starBase (http://starbase.sysu.edu.cn/) (49).
Supplementary Table S1 lists the comparison between Circ-
Net, starBase and circBase and it suggests some strong ad-
vantages of CircNet in comparison to these other works.
One of the advanced features that makes CircNet distinc-
tive is the novel design of circRNA naming in the catalog.
Emerging evidence suggests that multiple circular isoforms
originate from the same back splice junction site (11,26).
Given this, we catalog circRNAs based on distinctive iso-
forms instead of regarding one observed back-spliced junc-
tion position as a single circRNA. Following the Jeck et al.
suggestions in 2014 Nature Reviews (48), we designed a cir-
cRNA naming system which provides information regard-
ing source genes, whether the circRNA is antisense or in-
tronic, and whether the back splice junction site is exactly
located on well annotated exons. This annotation and incor-
poration into an integrated genome browser should provide
a clear method for future curation Expression profile and

accessibility to the examined sample condition provided in
CircNet would be a useful tool to study circRNA tissue spe-
cific function as well as correlation to disease. One observa-
tion worth mention is the potential wide existence of dou-
ble negative feedback control loops in the network. As seen
in the ZEB1-derived network example, the circRNA origi-
nating from within ZEB1 was putatively found to sponge a
miRNA targeting ZEB1. The double negative control re-
lationship on ZEB1 gene and mir-200 family was previ-
ously reported by Bracken et al. in 2008 (50). The corre-
lation between mir-200 ZEB1 regulation and lung adeno-
carcinoma was recently reported by Yang et al. (51). Data
provided in CircNet indicates that circRNAs spanning the
chr10:31791276–31791437 exon of ZEB1 play significant
roles in this regulation. With the newly discovered ZEB1 cir-
cRNAs enriched with mir-200 targeting seeds, a hypothet-
ical double negative feedback control loop of circRNA is
demonstrated on the default network on homepage of Cir-
cNet. Further inquiries using the regulatory networks iden-
tified using CircNet may discover additional novel feedback
loops with applicability to human disease.

AVAILABILITY

The CircNet database will be continuously maintained and
updated. The database is now publicly accessible at http:
//circnet.mbc.nctu.edu.tw/.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Sadlier,D.M. and Cohen,C.D. (2012) Next-generation sequencing
identifies TGF-�1-associated gene expression profiles in renal
epithelial cells reiterated in human diabetic nephropathy. Biochim.
Biophys. Acta (BBA)-Mol. Basis Dis., 1822, 589–599.

39. Lovén,J., Orlando,D.A., Sigova,A.A., Lin,C.Y., Rahl,P.B.,
Burge,C.B., Levens,D.L., Lee,T.I. and Young,R.A. (2012) Revisiting
global gene expression analysis. Cell, 151, 476–482.

40. Ngondo-Mbongo,R.P., Myslinski,E., Aster,J.C. and Carbon,P. (2013)
Modulation of gene expression via overlapping binding sites exerted
by ZNF143, Notch1 and THAP11. Nucleic Acids Res., 41, 4000–4014.

41. Pickrell,J.K., Marioni,J.C., Pai,A.A., Degner,J.F., Engelhardt,B.E.,
Nkadori,E., Veyrieras,J.-B., Stephens,M., Gilad,Y. and Pritchard,J.K.
(2010) Understanding mechanisms underlying human gene
expression variation with RNA sequencing. Nature, 464, 768–772.



Nucleic Acids Research, 2016, Vol. 44, Database issue D215

42. Derrien,T., Johnson,R., Bussotti,G., Tanzer,A., Djebali,S.,
Tilgner,H., Guernec,G., Martin,D., Merkel,A. and Knowles,D.G.
(2012) The GENCODE v7 catalog of human long noncoding RNAs:
analysis of their gene structure, evolution, and expression. Genome
Res., 22, 1775–1789.
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