14 research outputs found

    Attribute Artifacts Removal for Geometry-based Point Cloud Compression

    Full text link
    Geometry-based point cloud compression (G-PCC) can achieve remarkable compression efficiency for point clouds. However, it still leads to serious attribute compression artifacts, especially under low bitrate scenarios. In this paper, we propose a Multi-Scale Graph Attention Network (MS-GAT) to remove the artifacts of point cloud attributes compressed by G-PCC. We first construct a graph based on point cloud geometry coordinates and then use the Chebyshev graph convolutions to extract features of point cloud attributes. Considering that one point may be correlated with points both near and far away from it, we propose a multi-scale scheme to capture the short- and long-range correlations between the current point and its neighboring and distant points. To address the problem that various points may have different degrees of artifacts caused by adaptive quantization, we introduce the quantization step per point as an extra input to the proposed network. We also incorporate a weighted graph attentional layer into the network to pay special attention to the points with more attribute artifacts. To the best of our knowledge, this is the first attribute artifacts removal method for G-PCC. We validate the effectiveness of our method over various point clouds. Objective comparison results show that our proposed method achieves an average of 9.74% BD-rate reduction compared with Predlift and 10.13% BD-rate reduction compared with RAHT. Subjective comparison results present that visual artifacts such as color shifting, blurring, and quantization noise are reduced

    Offline and Online Optical Flow Enhancement for Deep Video Compression

    Full text link
    Video compression relies heavily on exploiting the temporal redundancy between video frames, which is usually achieved by estimating and using the motion information. The motion information is represented as optical flows in most of the existing deep video compression networks. Indeed, these networks often adopt pre-trained optical flow estimation networks for motion estimation. The optical flows, however, may be less suitable for video compression due to the following two factors. First, the optical flow estimation networks were trained to perform inter-frame prediction as accurately as possible, but the optical flows themselves may cost too many bits to encode. Second, the optical flow estimation networks were trained on synthetic data, and may not generalize well enough to real-world videos. We address the twofold limitations by enhancing the optical flows in two stages: offline and online. In the offline stage, we fine-tune a trained optical flow estimation network with the motion information provided by a traditional (non-deep) video compression scheme, e.g. H.266/VVC, as we believe the motion information of H.266/VVC achieves a better rate-distortion trade-off. In the online stage, we further optimize the latent features of the optical flows with a gradient descent-based algorithm for the video to be compressed, so as to enhance the adaptivity of the optical flows. We conduct experiments on a state-of-the-art deep video compression scheme, DCVC. Experimental results demonstrate that the proposed offline and online enhancement together achieves on average 12.8% bitrate saving on the tested videos, without increasing the model or computational complexity of the decoder side.Comment: 9 pages, 6 figure

    Measurement of two independent phase-shifts using coupled parametric amplifiers

    Full text link
    In this article, we demonstrate a scheme capable of two-phase measurement, i.e. the simultaneous measurement of the two phase-shifts occurring in two independent Mach-Zehnder interferometers using one intensity detector. Our scheme utilizes dark-state-enhanced coupled parametric amplifiers in an atomic medium to mix the multiple fields probing the various arms of the interferometers in parallel. The two phase-differences are then encoded in separate continuous-variable parameters in the spectral waveform of the parametrically amplified atom-radiated signal field, which can be directly decoupled in a single intensity measurement. Besides resolving two phase differences in parallel, this method can also be used to increase the channel capacity in optical and quantum communication by the simultaneous use of phase-modulation and amplitude-modulation.Comment: 8 pages, 4 figure

    Interactions between all pairs of neighboring trees in 16 forests worldwide reveal details of unique ecological processes in each forest, and provide windows into their evolutionary histories

    Get PDF
    When Darwin visited the Galapagos archipelago, he observed that, in spite of the islandsā€™ physical similarity, members of species that had dispersed to them recently were beginning to diverge from each other. He postulated that these divergences must have resulted primarily from interactions with sets of other species that had also diverged across these otherwise similar islands. By extrapolation, if Darwin is correct, such complex interactions must be driving species divergences across all ecosystems. However, many current general ecological theories that predict observed distributions of species in ecosystems do not take the details of between-species interactions into account. Here we quantify, in sixteen forest diversity plots (FDPs) worldwide, highly significant negative density-dependent (NDD) components of both conspecific and heterospecific between-tree interactions that affect the treesā€™ distributions, growth, recruitment, and mortality. These interactions decline smoothly in significance with increasing physical distance between trees. They also tend to decline in significance with increasing phylogenetic distance between the trees, but each FDP exhibits its own unique pattern of exceptions to this overall decline. Unique patterns of between-species interactions in ecosystems, of the general type that Darwin postulated, are likely to have contributed to the exceptions. We test the power of our null-model method by using a deliberately modified data set, and show that the method easily identifies the modifications. We examine how some of the exceptions, at the Wind River (USA) FDP, reveal new details of a known allelopathic effect of one of the Wind River gymnosperm species. Finally, we explore how similar analyses can be used to investigate details of many types of interactions in these complex ecosystems, and can provide clues to the evolution of these interactions

    Modified self-Kerr-nonlinearity in a four-level N

    No full text

    Environment- and trait-mediated scaling of tree occupancy in forests worldwide

    No full text
    Aim The relationship between the proportion of sites occupied by a species and the area of a site [occupancy-area relationship (OAR)] offers key information for biodiversity management and has long fascinated ecologists. We quantified the variation in OAR for 3,157 woody species in 17 forest plots worldwide and tested the relative importance of environment and species traits for explaining this variation and evaluated overall model predictive ability. Location Global. Time period Early 21st century. Major taxa studied Woody plants. Methods We used mixed-effect regression to examine the observed shape of the OAR (its slope) against species-specific and plot-wide predictors: coarse-grain occupancy, tree size, plot species richness, energy availability and topographic complexity. Results We found large variation in OAR slopes, and the variation was strongest among species within plots. The OAR slopes showed a latitudinal trend and were steeper near the equator. As predicted, coarse-grain occupancy and tree size negatively affected OAR slopes, whereas species richness had a positive effect and explained most of the variance between plots. Although hypothesized directionalities were broadly confirmed, traits and environment had relatively limited overall predictive power. Main conclusions These results document the variation of the OAR for 3,157 species at near-global extent. We found a latitudinal gradient in OAR slopes and confirmed key hypothesized predictors. But at this global extent and over the large set of species analysed, the remaining unexplained variation in OAR slopes was substantial. Nevertheless, this large-scale empirical analysis of the OAR offers an initial step towards a more general use of OARs for the fine-scale prediction of species distributions and abundance

    Species packing and the latitudinal gradient in beta-diversity

    No full text
    Acknowledgements We thank Dingliang Xing, Tak Fung, Fangliang He and Gabriel Arellano for comments on the earlier draft. We thank Alex Karolus for leading the census in the Danum Valley forest plot, and we are grateful to Mike Bernados and Bill McDonald for species identifications, to Fangliang He, Stuart Davies and Shameema Esufali for advice and training, to Qianjiangyuan National Park, the Center for Forest Science at Morton Arboretum, Fushan Research Center, Lienhuachih Research Center and Sri Lankan Forest Department for logistical support and the hundreds of fieldworkers and students who measured and mapped the trees analysed in this study. Funding. This work was financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB31000000) and National Natural Science Foundation of China (NSFC 31770478). Data collection was funded by many organizations,principally, NSFC 31470490, 31470487, 41475123, 31570426, 31570432, 31570486, 31622014, 31660130, 31670441, 31670628, 31700356, 31760141, 31870404 and 32061123003, the Southeast Asia Rain Forest Research Programme (SEARRP), National Key Basic Research Program of China (Grant No. 2014CB954100), SEARRP partners especially Yayasan Sabah, HSBC Malaysia, financial project of Heilongjiang Pro- vince (XKLY2018ZR01), National Key R&D Program of China (2016YFC1201102 and 2016YFC0502405), the Central Public-interest Scientific Institution Basal Research Fund (CAFYBB2017ZE001), CTFS Forest GEO for funding for Sinharaja forest plot, the Taiwan For- estry Bureau (92-00-2-06 and tfbm960226), the Taiwan Forestry Research Institute (93AS-2.4.2-FI-G1, 94AS-11.1.2-FI-G1, and 97AS- 7.1.1.F1-G1) and the Ministry of Science and Technology of Taiwan (NSC92-3114-B002-009) for funding the Fushan and Lienhuachih plots, Scientific Research Funds of Heilongjiang Provincial Research Institutes (CZKYF2021B006). J.C.S. considers this work a contribution to his VILLUM Investigator project ā€˜Biodiversity Dynamics in a Changing Worldā€™ funded by VILLUM FONDEN (grant no. 16549).Peer reviewedPostprin

    Endovascular thrombectomy with or without intravenous alteplase in acute stroke

    No full text
    BACKGROUND In acute ischemic stroke, there is uncertainty regarding the benefit and risk of administering intravenous alteplase before endovascular thrombectomy. METHODS We conducted a trial at 41 academic tertiary care centers in China to evaluate endovascular thrombectomy with or without intravenous alteplase in patients with acute ischemic stroke. Patients with acute ischemic stroke from large-vessel occlusion in the anterior circulation were randomly assigned in a 1:1 ratio to undergo endovascular thrombectomy alone (thrombectomy-alone group) or endovascular thrombectomy preceded by intravenous alteplase, at a dose of 0.9 mg per kilogram of body weight, administered within 4.5 hours after symptom onset (combination-therapy group). The primary analysis for noninferiority assessed the between-group difference in the distribution of the modified Rankin scale scores (range, 0 [no symptoms] to 6 [death]) at 90 days on the basis of a lower boundary of the 95% confidence interval of the adjusted common odds ratio equal to or larger than 0.8. We assessed various secondary outcomes, including death and reperfusion of the ischemic area. RESULTS Of 1586 patients screened, 656 were enrolled, with 327 patients assigned to the thrombectomy-alone group and 329 assigned to the combination-therapy group. Endovascular thrombectomy alone was noninferior to combined intravenous alteplase and endovascular thrombectomy with regard to the primary outcome (adjusted common odds ratio, 1.07; 95% confidence interval, 0.81 to 1.40; P=0.04 for noninferiority) but was associated with lower percentages of patients with successful reperfusion before thrombectomy (2.4% vs. 7.0%) and overall successful reperfusion (79.4% vs. 84.5%). Mortality at 90 days was 17.7% in the thrombectomy-alone group and 18.8% in the combination-therapy group. CONCLUSIONS In Chinese patients with acute ischemic stroke from large-vessel occlusion, endovascular thrombectomy alone was noninferior with regard to functional outcome, within a 20% margin of confidence, to endovascular thrombectomy preceded by intravenous alteplase administered within 4.5 hours after symptom onset. (Funded by the Stroke Prevention Project of the National Health Commission of the Peopleā€™s Republic of China and the Wu Jieping Medical Foundation; DIRECT-MT Clinical-Trials.gov number, NCT03469206.
    corecore