14 research outputs found

    Enhanced heating rate of black carbon above planetary boundary layer over megacities in summertime

    Get PDF
    The fast development of a secondary aerosol layer was observed over megacities in eastern Asia during summertime. Within three hours, from midday to early afternoon, the contribution of secondary aerosols above the planetary boundary layer (PBL) increased by a factor of 3-5, and the coatings on the black carbon (BC) also increased and enhanced its absorption efficiency by 50%. This tended to result from the intensive actinic flux received above the PBL which promoted the photochemical reactions. The absorption of BC could be further amplified by the strong reflection of solar radiation over the cloud top across the PBL. This enhanced heating effect of BC introduced by combined processes (intensive solar radiation, secondary formation and cloud reflection) may considerably increase the temperature inversion above the PBL. This mechanism should be considered when evaluating the radiative impact of BC, especially for the polluted regions receiving strong solar radiation

    Transcriptional Regulation of Aflatoxin Biosynthesis and Conidiation in <i>Aspergillus flavus</i> by <i>Wickerhamomyces anomalus</i> WRL-076 for Reduction of Aflatoxin Contamination

    No full text
    Aspergillus flavus is a ubiquitous saprophytic fungus found in soils across the world. The fungus is the major producer of aflatoxin (AF) B1, which is toxic and a potent carcinogen to humans. Aflatoxin B1 (AFB1) is often detected in agricultural crops such as corn, peanut, almond, and pistachio. It is a serious and recurrent problem and causes substantial economic losses. Wickerhamomyces anomalus WRL-076 was identified as an effective biocontrol yeast against A. flavus. In this study, the associated molecular mechanisms of biocontrol were investigated. We found that the expression levels of eight genes, aflR, aflJ, norA, omtA, omtB, pksA, vbs, and ver-1 in the aflatoxin biosynthetic pathway cluster were suppressed. The decreases ranged from several to 10,000 fold in fungal samples co-cultured with W. anomalus. Expression levels of conidiation regulatory genes brlA, abaA, and wetA as well as sclerotial regulatory gene (sclR) were all down regulated. Consistent with the decreased gene expression levels, aflatoxin concentrations in cultural medium were reduced to barely detectable. Furthermore, fungal biomass and conidial number were significantly reduced by 60% and more than 95%, respectively. The results validate the biocontrol efficacy of W. anomalus WRL-076 observed in the field experiments

    Concentration and Physical Characteristics of Black Carbon in Winter Snow of Beijing in 2015

    No full text
    In Beijing, the probability of snowfall is decreasing as a result of global warming. At the same time, Beijing has suffered severe air pollution. In this paper, the concentration and particle size characteristics of BC (Black Carbon) in snow during the winter of 2015 in Beijing were analyzed by the SP2 method. The average concentration of BC in snow meltwater in Beijing is 82 ng/mL, with a minimum value of 62.9 ng/mL and a maximum of 210.6 ng/mL. The BC particle size in snow and ice in the Beijing area is mostly concentrated in the range of 70–400 nm. After log-normal, the BC particle size above 600 nm is still small, which should be closely related to the nature of the local BC emission source. The concentration of BC in snow is highly susceptible to meteorological conditions and local pollution levels. When Beijing is under the control of the east wind or the southeast wind, aerosols in the urban areas can easily accumulate in the northwestern mountains and then settle or participate in the snowfall process, resulting in an increase in BC aerosol accumulation in the snow, thus further changing the optical properties of snow in the Beijing area

    Monsoon-driven transport of organochlorine pesticides and polychlorinated biphenyls to the Tibetan plateau:three year atmospheric monitoring study

    No full text
    Due to the influence of the Indian monsoon system, air mass transport in and to the Tibetan Plateau shows obvious seasonality. In order to assess the responses of atmospheric concentrations of persistent organic pollutants (POPs) to the Indian Monsoon fluctuation patterns, a three year air monitoring program (2008–2011) was conducted in an observation station close to the Yarlung Tsangpo Grand Canyon, southeastern Tibetan Plateau. The air concentrations of polychlorinated biphenyls (PCBs) and hexachlorocyclohexanes (HCHs) are generally comparable to those of other remote regions, whereas the concentrations of DDTs are much higher than reported for the polar regions, the North American Rocky Mountains, and the European Alps. The concentrations of DDTs and PCBs were strongly linked to the cyclic patterns of the Indian monsoon, displaying higher values in the monsoon season (May–September) and lower values in the nonmonsoon season (November–March). A “bimodal” pattern was observed for α- and γ-HCH, with higher concentrations in spring and autumn and lower concentrations in the summer (monsoon season). Rain scavenging in the monsoon season likely resulted in the lower HCH concentrations in the atmosphere. This paper sheds lights on the role the Indian monsoon plays on the atmospheric transport of POPs to the Tibetan Plateau

    Characterization of Blue Mold Penicillium Species Isolated from Stored Fruits Using Multiple Highly Conserved Loci

    No full text
    Penicillium is a large genus of common molds with over 400 described species; however, identification of individual species is difficult, including for those species that cause postharvest rots. In this study, blue rot fungi from stored apples and pears were isolated from a variety of hosts, locations, and years. Based on morphological and cultural characteristics and partial amplification of the β-tubulin locus, the isolates were provisionally identified as several different species of Penicillium. These isolates were investigated further using a suite of molecular DNA markers and compared to sequences of the ex-type for cognate species in GenBank, and were identified as P. expansum (3 isolates), P. solitum (3 isolates), P. carneum (1 isolate), and P. paneum (1 isolate). Three of the markers we used (ITS, internal transcribed spacer rDNA sequence; benA, β-tubulin; CaM, calmodulin) were suitable for distinguishing most of our isolates from one another at the species level. In contrast, we were unable to amplify RPB2 sequences from four of the isolates. Comparison of our sequences with cognate sequences in GenBank from isolates with the same species names did not always give coherent data, reinforcing earlier studies that have shown large intraspecific variability in many Penicillium species, as well as possible errors in some sequence data deposited in GenBank

    Monsoon-Driven Transport of Organochlorine Pesticides and Polychlorinated Biphenyls to the Tibetan Plateau: Three Year Atmospheric Monitoring Study

    No full text
    Due to the influence of the Indian monsoon system, air mass transport in and to the Tibetan Plateau shows obvious seasonality. In order to assess the responses of atmospheric concentrations of persistent organic pollutants (POPs) to the Indian Monsoon fluctuation patterns, a three year air monitoring program (2008–2011) was conducted in an observation station close to the Yarlung Tsangpo Grand Canyon, southeastern Tibetan Plateau. The air concentrations of polychlorinated biphenyls (PCBs) and hexachlorocyclohexanes (HCHs) are generally comparable to those of other remote regions, whereas the concentrations of DDTs are much higher than reported for the polar regions, the North American Rocky Mountains, and the European Alps. The concentrations of DDTs and PCBs were strongly linked to the cyclic patterns of the Indian monsoon, displaying higher values in the monsoon season (May–September) and lower values in the nonmonsoon season (November–March). A “bimodal” pattern was observed for α- and γ-HCH, with higher concentrations in spring and autumn and lower concentrations in the summer (monsoon season). Rain scavenging in the monsoon season likely resulted in the lower HCH concentrations in the atmosphere. This paper sheds lights on the role the Indian monsoon plays on the atmospheric transport of POPs to the Tibetan Plateau

    A study of elevated pollution layer over the North China Plain using aircraft measurements

    No full text
    An elevated pollution layer (EPL) at altitude &sim;1700 m was observed over the North China Plain (NCP) in November 2016. The vertical profiles of aerosol loadings, chemical compositions and meteorological parameters were in-situ measured at both ground and aircraft platforms. The EPLs were observed simultaneously over Beijing and Baoding city (&sim;150 km distance between) with similar aerosol concentration and size distribution, indicating the impact of the EPL at regional scale. The synoptic and remote sensing analysis suggest the pollutants in the EPL may result from regional transport from the polluted southwest, and then elevated by the influence of anticyclone circulation and surrounding terrain. The descent air mass next day may lead to EPL entrainment and contribute to increased aerosol concentration at lower level. The non-refractory compositions measured by aerosol mass spectrometer showed more significant fraction of nitrate and secondary organics in the EPL compared to the other layers. The pollutants in the EPL was then mixed into the developed planetary boundary layer (PBL), leading to uniform distribution of aerosol composition. Such atmospheric stratification at high level and its subsequent impact on the lower level needs to be considered for the future radiative forcing study over this region.</p
    corecore