59 research outputs found

    Stability bound analysis of singularly perturbed systems with time-delay

    Get PDF
    This paper considers the stability bound problem of singularly perturbed systems with time-delay. Some stability criteria are derived by constructing appropriate Lyapunov-Krasovskii functionals. The proposed criteria are less conservative than the existing ones. Two numerical examples are given to illustrate the advantages and effectiveness of the proposed methods

    A revised averaging method and general forms of approximate solution for nonlinear oscillator with only polynomial-type displacement nonlinearity

    Get PDF
    In this paper a revised averaging method is presented, that does not need the detuning factor in the solving procedure. Comparison with the traditional averaging method shows that it has the similar solving procedure and the same result as the primary resonance of the traditional averaging method. Then the nonlinear oscillator with only polynomial-type displacement nonlinearity is studied, and the general forms of the first-order approximate solution by this revised averaging method, and by the traditional averaging method for the super-harmonic resonance and sub-harmonic resonance are established. At last, the Duffing oscillator is investigated as an example, and the comparison of the analytical and numerical results proves the validity and simplicity of the presented method

    An efficient optimal design methodology for abnormal noise control of automobile transmission in the neutral idle condition

    Get PDF
    The modal analysis of the automobile transmission housing assembly is formulated using 3D graphics software Pro/E together with Finite Element Method in order to reduce the noise and vibration by accurately identifying the noise source of the transmission in the neutral idle condition. Besides, the calculation of meshing frequency of gear pair is conducted. After comparing model analysis results with the calculation results, we can intuitively analysis the dynamic characteristics of the transmission housing assembly and find out sensitive parts of the housing vibration. In order to enhance the structural stiffness of the transmission housing assembly and allow intentionally the natural frequency of the transmission to avoid the gear meshing frequency, we increase the thickness of thin plate or add the strengthening rib on the weak parts of the transmission housing assembly. The results of the above modified modal reanalysis show that low mode frequencies of the transmission housing assembly are greatly improved after optimization, and avoid the gear meshing excitation frequency effectively. The probability of resonance for the transmission housing assembly in use will be greatly reduced, which can well achieve the purpose of enhancing the dynamic characteristics of the transmission housing assembly

    Application of Composite Materials in Engine

    Get PDF
    This paper analyzes the technical and demand problems of the current automotive and aviation engines, andintroduces the applications of carbon fiber reinforced metal matrix composites and resin matrix composites in thepiston and connecting rods of automobile engines. Composite materials and ceramic matrix composites on civilaircraft engines, as well as composite materials and composites in military aerospace engines (solid rocket motors andtranscendental ramjet) applications, and some of the composite materials The application raises key questions andsuggestions

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Calibration of Discrete Element Simulation Parameters for Powder Screw Conveying

    No full text
    In order to obtain the accurate contact parameters in the simulation process of powder screw conveying, this paper took wheat flour as an example, based on the discrete element JKR (Johnson-Kendall-Roberts) contact model, and directly calibrated the simulation contact parameters in the process of screw conveying in response to the mass flow rate of wheat flour. Firstly, the simulation density of wheat flour particles was calibrated, and the simulation density of wheat flour particles was 1320 kg/m. Then, Plackett-Burman experiment was used to screen out the parameters that had significant influence on the mass flow rate: surface energy JKR, coefficient of static friction between wheat flour and wheat flour, and the coefficient of static friction between wheat flour and stainless steel. The second-order regression model of mass flow rate and significance parameters was established and optimized based on Box-Behnken experiment, and the optimal combination of significance parameters: JKR was obtained to be 0.364; the static friction coefficient of wheat flour to wheat flour was 0.437; and the static friction coefficient of wheat flour to stainless steel was 0.609. Finally, the calibration parameters were used for simulation. By comparing the mass flow rate of simulation and experiment, the relative error of the two was 1.37%. The simulation and experiment flow rate values at different rotating speeds (60 r/min, 80 r/min, 100 r/min, 120 r/min, and 140 r/min) were further compared, and the errors were all within 3%. The method of directly calibrating the simulation contact parameters through the screw conveying process can improve the accuracy of screw conveying simulation, and providing a method and basis for powder contact parameters calibration and screw conveying simulation of wheat flour

    Stability Bound Analysis and Synthesis for Singularly Perturbed Systems with Time-Varying Delay

    Get PDF
    This paper addresses the problems of stability bound analysis and synthesis for singularly perturbed systems with time-varying delay. First, by constructing an appropriate Lyapunov-Krasovskii functional, a sufficient condition is derived for the system to be stable when the singular perturbation parameter is lower than a predefined upper bound which is referred to as the stability bound of the singularly perturbed system. The proposed criterion needs less computational cost than the existing ones. Then, a state feedback controller design method is proposed to achieve a prescribed stability bound, which can be applied to both standard and nonstandard singularly perturbed systems with time-varying delay. Finally, the effectiveness and merits of the proposed approach are shown through numerical examples

    Study on the Absorption Characteristics and Laser Damage Properties of Fused Silica Optics under Flexible Polishing and Shallow DCE Process

    No full text
    The enhancement of laser damage resistance of fused silica optics was a hotspot in scientific research. At present, a variety of modern processes have been produced to improve the laser induced damage threshold (LIDT) of fused silica optics. They included pre-treatment processes represented by flexible computer controlled optical surfacing (CCOS), magnetorheological finishing (MRF), ion beam finishing (IBF), and post-treatment processes represented by dynamic chemical etching (DCE). These have achieved remarkable results. However, there are still some problems that need to be solved urgently, such as excessive material removal, surface accuracy fluctuation in the DCE process, and the pollution in MRF process, etc. In view of above problems, an MRF, CCOS, IBF and shallow DCE combined technique was used to process fused silica optics. The surface morphology could be greatly controlled and chemical etching depth was reduced, while the LIDT increased steadily. After processing by this combined technique, the LIDT increased to 12.1 J/cm2 and the laser damage resistance properties of fused silica were significantly enhanced. In general, the MRF, IBF, CCOS and shallow DCE combined technique brought much help to the enhancement of laser damage resistance of fused silica, and could be used as a process route in the manufacturing process of fused silica

    Mechanical Properties, Crystallization Behaviors and Phase Morphologies of PLA/GTR Blends by Reactive Compatibilization

    No full text
    Different ratios of Polylactic acid/Ground tire rubber (PLA/GTR) were prepared by melt blending and adding dicumyl peroxide (DCP) as a reactive compatibilizer. The compatibilizer could initiate a reaction between PLA and GTR to increase the compatibility and interfacial adhesion of the two phases, as indicated by Fourier transform infrared (FTIR) spectrometry and scanning electron microscopy (SEM). Adding the compatibilizer significantly improved the impact strength of the PLA/GTR blends without compromising the tensile strength. The elongation at the break and notched Izod impact strength of the blend increased by 61.8% and 150%, respectively, but there was only a 4.1% decline in tensile strength compared with the neat PLA. The plastic deformation on the impact fractured surface showed that the improvement of toughness could be attributed to the compatibilization initiated by DCP. Therefore, the improvement of the interfacial adhesion and compatibility of the two phases induced a brittle–ductile transition that occurred in the failure of blends. Moreover, the crystallinity of blends reached 40.5% without a further annealing treatment, which was nearly 24 times of the neat PLA, and the crystallization rate was enhanced simultaneously. These exciting findings suggest that compatibilization can provide a promising avenue for fabricating GTR-toughened PLA blends with balanced stiffness–toughness
    • …
    corecore