2,299 research outputs found

    Helical Flow in Healthy and Diseased Patient-specific Coronary Bifurcations

    Full text link
    Helical flow (HF) exists in healthy and diseased coronary bifurcations and was found to have a protective atherosclerotic vascular effect in other vessels. However, the role of HF in patient-specific human coronary arteries still needs further study, and is therefore the objective of this study in both healthy and diseased bifurcations. Computational studies were conducted on 16 patient-specific coronary bifurcations, including eight healthy and eight identical cases with idealized narrowing to represent disease. In general, higher HF intensity may have a favorable effect as it corelated to the reduction of the percentage vessel area exposed to adverse time averaged wall shear stress (TAWSS%) in both healthy and diseased models. The HF intensity and distribution of each model varies due to the complex shape of patient-specific models. The presence of disease appears to have an important impact on the downstream HF patterns and the TAWSS distributions. Clinical Relevance - By understanding the relationship between HF and hemodynamics, HF may be used as a predictor for the formation and progression of atherosclerotic plaque in coronary arteries instead of near-wall WSS measures, which can be determined with higher accuracy in vivo

    New type of microengine using internal combustion of hydrogen and oxygen

    Get PDF
    Microsystems become part of everyday life but their application is restricted by lack of strong and fast motors (actuators) converting energy into motion. For example, widespread internal combustion engines cannot be scaled down because combustion reactions are quenched in a small space. Here we present an actuator with the dimensions 100x100x5 um^3 that is using internal combustion of hydrogen and oxygen as part of its working cycle. Water electrolysis driven by short voltage pulses creates an extra pressure of 0.5-4 bar for a time of 100-400 us in a chamber closed by a flexible membrane. When the pulses are switched off this pressure is released even faster allowing production of mechanical work in short cycles. We provide arguments that this unexpectedly fast pressure decrease is due to spontaneous combustion of the gases in the chamber. This actuator is the first step to truly microscopic combustion engines.Comment: Paper and Supplementary Information (to appear in Scientific Reports

    Deep Convolutional Neural Networks for Human Action Recognition Using Depth Maps and Postures

    Get PDF
    In this paper, we present a method (Action-Fusion) for human action recognition from depth maps and posture data using convolutional neural networks (CNNs). Two input descriptors are used for action representation. The first input is a depth motion image that accumulates consecutive depth maps of a human action, whilst the second input is a proposed moving joints descriptor which represents the motion of body joints over time. In order to maximize feature extraction for accurate action classification, three CNN channels are trained with different inputs. The first channel is trained with depth motion images (DMIs), the second channel is trained with both DMIs and moving joint descriptors together, and the third channel is trained with moving joint descriptors only. The action predictions generated from the three CNN channels are fused together for the final action classification. We propose several fusion score operations to maximize the score of the right action. The experiments show that the results of fusing the output of three channels are better than using one channel or fusing two channels only. Our proposed method was evaluated on three public datasets: 1) Microsoft action 3-D dataset (MSRAction3D); 2) University of Texas at Dallas-multimodal human action dataset; and 3) multimodal action dataset (MAD) dataset. The testing results indicate that the proposed approach outperforms most of existing state-of-the-art methods, such as histogram of oriented 4-D normals and Actionlet on MSRAction3D. Although MAD dataset contains a high number of actions (35 actions) compared to existing action RGB-D datasets, this paper surpasses a state-of-the-art method on the dataset by 6.84%

    The landslide story

    Get PDF
    The catastrophic Wenchuan earthquake induced an unprecedented number of geohazards. The risk of heightened landslide frequency after a quake, with potential secondary effects such as river damming and subsequent floods, needs more focused attention

    R-process enrichment from a single event in an ancient dwarf galaxy

    Get PDF
    Elements heavier than zinc are synthesized through the (r)apid and (s)low neutron-capture processes. The main site of production of the r-process elements (such as europium) has been debated for nearly 60 years. Initial studies of chemical abundance trends in old Milky Way halo stars suggested continual r-process production, in sites like core-collapse supernovae. But evidence from the local Universe favors r-process production mainly during rare events, such as neutron star mergers. The appearance of a europium abundance plateau in some dwarf spheroidal galaxies has been suggested as evidence for rare r-process enrichment in the early Universe, but only under the assumption of no gas accretion into the dwarf galaxies. Cosmologically motivated gas accretion favors continual r-process enrichment in these systems. Furthermore, the universal r-process pattern has not been cleanly identified in dwarf spheroidals. The smaller, chemically simpler, and more ancient ultra-faint dwarf galaxies assembled shortly after the first stars formed, and are ideal systems with which to study nucleosynthesis events such as the r-process. Reticulum II is one such galaxy. The abundances of non-neutron-capture elements in this galaxy (and others like it) are similar to those of other old stars. Here, we report that seven of nine stars in Reticulum II observed with high-resolution spectroscopy show strong enhancements in heavy neutron-capture elements, with abundances that follow the universal r-process pattern above barium. The enhancement in this "r-process galaxy" is 2-3 orders of magnitude higher than that detected in any other ultra-faint dwarf galaxy. This implies that a single rare event produced the r-process material in Reticulum II. The r-process yield and event rate are incompatible with ordinary core-collapse supernovae, but consistent with other possible sites, such as neutron star mergers.Comment: Published in Nature, 21 Mar 2016: http://dx.doi.org/10.1038/nature1742

    Implicit Temporal Expectation Attenuates Auditory Attentional Blink

    Get PDF
    Attentional blink (AB) describes a phenomenon whereby correct identification of a first target impairs the processing of a second target (i.e., probe) nearby in time. Evidence suggests that explicit attention orienting in the time domain can attenuate the AB. Here, we used scalp-recorded, event-related potentials to examine whether auditory AB is also sensitive to implicit temporal attention orienting. Expectations were set up implicitly by varying the probability (i.e., 80% or 20%) that the probe would occur at the +2 or +8 position following target presentation. Participants showed a significant AB, which was reduced with the increased probe probability at the +2 position. The probe probability effect was paralleled by an increase in P3b amplitude elicited by the probe. The results suggest that implicit temporal attention orienting can facilitate short-term consolidation of the probe and attenuate auditory AB

    Ectodermal-Neural Cortex 1 Down-Regulates Nrf2 at the Translational Level

    Get PDF
    The transcription factor Nrf2 is the master regulator of a cellular defense mechanism against environmental insults. The Nrf2-mediated antioxidant response is accomplished by the transcription of a battery of genes that encode phase II detoxifying enzymes, xenobiotic transporters, and antioxidants. Coordinated expression of these genes is critical in protecting cells from toxic and carcinogenic insults and in maintaining cellular redox homeostasis. Activation of the Nrf2 pathway is primarily controlled by Kelch-like ECH-associated protein 1 (Keap1), which is a molecular switch that turns on or off the Nrf2 signaling pathway according to intracellular redox conditions. Here we report our finding of a novel Nrf2 suppressor ectodermal-neural cortex 1 (ENC1), which is a BTB-Kelch protein and belongs to the same family as Keap1. Transient expression of ENC1 reduced steady-state levels of Nrf2 and its downstream gene expression. Although ENC1 interacted with Keap1 indirectly, the ENC1-mediated down-regulation of Nrf2 was independent of Keap1. The negative effect of ENC1 on Nrf2 was not due to a change in the stability of Nrf2 because neither proteasomal nor lysosomal inhibitors had any effects. Overexpression of ENC1 did not result in a change in the level of Nrf2 mRNA, rather, it caused a decrease in the rate of Nrf2 protein synthesis. These results demonstrate that ENC1 functions as a negative regulator of Nrf2 through suppressing Nrf2 protein translation, which adds another level of complexity in controlling the Nrf2 signaling pathway

    Targeted Morphoproteomic Profiling of Ewing's Sarcoma Treated with Insulin-Like Growth Factor 1 Receptor (IGF1R) Inhibitors: Response/Resistance Signatures

    Get PDF
    Insulin-like growth factor 1 receptor (IGF1R) targeted therapies have resulted in responses in a small number of patients with advanced metastatic Ewing's sarcoma. We performed morphoproteomic profiling to better understand response/resistance mechanisms of Ewing's sarcoma to IGF1R inhibitor-based therapy.This pilot study assessed two patients with advanced Ewing's sarcoma treated with IGF1R antibody alone followed by combined IGF1R inhibitor plus mammalian target of rapamycin (mTOR) inhibitor treatment once resistance to single-agent IGF1R inhibitor developed. Immunohistochemical probes were applied to detect p-mTOR (Ser2448), p-Akt (Ser473), p-ERK1/2 (Thr202/Tyr204), nestin, and p-STAT3 (Tyr 705) in the original and recurrent tumor. The initial remarkable radiographic responses to IGF1R-antibody therapy was followed by resistance and then response to combined IGF1R plus mTOR inhibitor therapy in both patients, and then resistance to the combination regimen in one patient. In patient 1, upregulation of p-Akt and p-mTOR in the tumor that relapsed after initial response to IGF1R antibody might explain the resistance that developed, and the subsequent response to combined IGF1R plus mTOR inhibitor therapy. In patient 2, upregulation of mTOR was seen in the primary tumor, perhaps explaining the initial response to the IGF1R and mTOR inhibitor combination, while the resistant tumor that emerged showed activation of the ERK pathway as well.Morphoproteomic analysis revealed that the mTOR pathway was activated in these two patients with advanced Ewing's sarcoma who showed response to combined IGF1R and mTOR inhibition, and the ERK pathway in the patient in whom resistance to this combination emerged. Our pilot results suggests that morphoproteomic assessment of signaling pathway activation in Ewing's sarcoma merits further investigation as a guide to understanding response and resistance signatures
    corecore