386 research outputs found

    Novel Code Plagiarism Detection Based on Abstract Syntax Tree and Fuzzy Petri Nets

    Get PDF
    Those students who major in computer science and/or engineering are required to design program codes in a variety of programming languages. However, many students submit their source codes they get from the Internet or friends with no or few modifications. Detecting the code plagiarisms done by students is very time-consuming and leads to the problems of unfair learning performance evaluation. This paper proposes a novel method to detect the source code plagiarisms by using a high-level fuzzy Petri net (HLFPN) based on abstract syntax tree (AST). First, the AST of each source code is generated after the lexical and syntactic analyses have been done. Second, token sequence is generated based on the AST. Using the AST can effectively detect the code plagiarism by changing the identifier or program statement order. Finally, the generated token sequences are compared with one another using an HLFPN to determine the code plagiarism. Furthermore, the experimental results have indicated that we can make better determination to detect the code plagiarism

    Irf3 polymorphism alters induction of interferon beta in response to Listeria monocytogenes infection

    Get PDF
    Genetic makeup of the host plays a significant role in the course and outcome of infection. Inbred strains of mice display a wide range of sensitivities to Listeria monocytogenes infection and thus serve as a good model for analysis of the effect of genetic polymorphism. The outcome of L. monocytogenes infection in mice is influenced by the ability of this bacterium to induce expression of interferon beta mRNA, encoded in mouse by the Ifnb1 (interferon beta 1, fibroblast) gene. Mouse strains that lack components of the IFN beta signaling pathway are substantially more resistant to infection. We found that macrophages from the ByJ substrain of the common C57BL/6 inbred strain of mice are impaired in their ability to induce Ifnb1 expression in response to bacterial and viral infections. We mapped the locus that controls differential expression of Ifnb1 to a region on Chromosome 7 that includes interferon regulatory factor 3 (Irf3), which encodes a transcription factor responsible for early induction of Ifnb1 expression. In C57BL/6ByJ mice, Irf3 mRNA was inefficiently spliced, with a significant proportion of the transcripts retaining intron 5. Analysis of the Irf3 locus identified a single base-pair polymorphism and revealed that intron 5 of Irf3 is spliced by the atypical U12-type spliceosome. We found that the polymorphism disrupts a U12-type branchpoint and has a profound effect on the efficiency of splicing of Irf3. We demonstrate that a naturally occurring change in the splicing control element has a dramatic effect on the resistance to L. monocytogenes infection. Thus, the C57BL/6ByJ mouse strain serves as an example of how a mammalian host can counter bacterial virulence strategies by introducing subtle alteration of noncoding sequences

    Development of a Game-Based e-Learning System with Augmented Reality for Improving Students’ Learning Performance

    Get PDF
    Currently, the school children usually spend a lot of time on the games in their recreational activities and some of them are even addicted to the games. Compared with other extracurricular activities, the e-Learning system reflects the fact that school children are very interested in the games. As a result, educators have lately craved to develop effective teaching activities that allow the school children to learn some subjects and to play the games simultaneously.  Therefore, this study is based on an e-Learning system which combines the serious game by Unity3D Game Engine with augmented reality (AR). Students are able to acquire their knowledge and to foster logical skills via this game-based e-Learning system.  According to its efficacy and utilities, this study has assessed and compared the game-based e-Learning system with the traditional learning and other e-Learning systems. The experimental results have indicated that the proposed game-based e-Learning system can outperform other existing systems

    Dementia-related adverse events in PARADIGM-HF and other trials in heart failure with reduced ejection fraction.

    Get PDF
    Aims: Inhibition of neprilysin, an enzyme degrading natriuretic and other vasoactive peptides, is beneficial in heart failure with reduced ejection fraction (HFrEF), as shown in PARADIGM-HF which compared the angiotensin receptor–neprilysin inhibitor (ARNI) sacubitril/valsartan with enalapril. As neprilysin is also one of many enzymes clearing amyloid-β peptides from the brain, there is a theoretical concern about the long-term effects of sacubitril/valsartan on cognition. Therefore, we have examined dementia-related adverse effects (AEs) in PARADIGM-HF and placed these findings in the context of other recently conducted HFrEF trials. Methods and results: In PARADIGM-HF, patients with symptomatic HFrEF were randomized to sacubitril/valsartan 97/103 mg b.i.d. or enalapril 10 mg b.i.d. in a 1:1 ratio. We systematically searched AE reports, coded using the Medical Dictionary for Regulatory Activities (MedDRA), using Standardized MedDRA Queries (SMQs) with ‘broad’ and ‘narrow’ preferred terms related to dementia. In PARADIGM-HF, 8399 patients aged 18–96 years were randomized and followed for a median of 2.25 years (up to 4.3 years). The narrow SMQ search identified 27 dementia-related AEs: 15 (0.36%) on enalapril and 12 (0.29%) on sacubitril/valsartan [hazard ratio (HR) 0.73, 95% confidence interval (CI) 0.33–1.59]. The broad search identified 97 (2.30%) and 104 (2.48%) AEs (HR 1.01, 95% CI 0.75–1.37), respectively. The rates of dementia-related AEs in both treatment groups in PARADIGM-HF were similar to those in three other recent trials in HFrEF. Conclusion: We found no evidence that sacubitril/valsartan, compared with enalapril, increased dementia-related AEs, although longer follow-up may be necessary to detect such a signal and more sensitive tools are needed to detect lesser degrees of cognitive impairment. Further studies to address this question are warranted

    Outcomes and effect of treatment according to etiology in HFrEF: an analysis of PARADIGM-HF

    Get PDF
    Objectives: The purpose of this study was to compare outcomes (and the effect of sacubitril/valsartan) according to etiology in the PARADIGM-HF (Prospective comparison of angiotensin-receptor-neprilysin inhibitor [ARNI] with angiotensin-converting-enzyme inhibitor [ACEI] to Determine Impact on Global Mortality and morbidity in Heart Failure) trial. Background: Etiology of heart failure (HF) has changed over time in more developed countries and is also evolving in non-Western societies. Outcomes may vary according to etiology, as may the effects of therapy. Methods: We examined outcomes and the effect of sacubtril/valsartan according to investigator-reported etiology in PARADIGM-HF. The outcomes analyzed were the primary composite of cardiovascular death or HF hospitalization, and components, and death from any cause. Outcomes were adjusted for known prognostic variables including N terminal pro-B type natriuretic peptide. Results: Among the 8,399 patients randomized, 5,036 patients (60.0%) had an ischemic etiology. Among the 3,363 patients (40.0%) with a nonischemic etiology, 1,595 (19.0% of all patients; 47% of nonischemic patients) had idiopathic dilated cardiomyopathy, 968 (11.5% of all patients; 28.8% of nonischemic patients) had a hypertensive cause, and 800 (9.5% of all patients, 23.8% of nonischemic patients) another cause (185 infective/viral, 158 alcoholic, 110 valvular, 66 diabetes, 30 drug-related, 14 peripartum–related, and 237 other). Whereas the unadjusted rates of all outcomes were highest in patients with an ischemic etiology, the adjusted hazard ratios (HRs) were not different from patients in the 2 major nonischemic etiology categories; for example, for the primary outcome, compared with ischemic (HR: 1.00), hypertensive 0.87 (95% confidence interval [CI]: 0.75 to 1.02), idiopathic 0.92 (95% CI: 0.82 to 1.04) and other 1.00 (95% CI: 0.85 to 1.17). The benefit of sacubitril/valsartan over enalapril was consistent across etiologic categories (interaction for primary outcome; p = 0.11). Conclusions: Just under one-half of patients in this global trial had nonischemic HF with reduced ejection fraction, with idiopathic and hypertensive the most commonly ascribed etiologies. Adjusted outcomes were similar across etiologic categories, as was the benefit of sacubitril/valsartan over enalapril. (Efficacy and Safety of LCZ696 Compared to Enalapril on Morbidity and Mortality of Patients With Chronic Heart Failure; NCT01035255

    A unified framework for the orbital structure of bars and triaxial ellipsoids

    Get PDF
    We examine a large random sample of orbits in two self-consistent simulations of N-body bars. Orbits in these bars are classified both visually and with a new automated orbit classification method based on frequency analysis. The well-known prograde x1 orbit family originates from the same parent orbit as the box orbits in stationary and rotating triaxial ellipsoids. However, only a small fraction of bar orbits (~4%) have predominately prograde motion like their periodic parent orbit. Most bar orbits arising from the x1 orbit have little net angular momentum in the bar frame, making them equivalent to box orbits in rotating triaxial potentials. In these simulations a small fraction of bar orbits (~7%) are long-axis tubes that behave exactly like those in triaxial ellipsoids: they are tipped about the intermediate axis owing to the Coriolis force, with the sense of tipping determined by the sign of their angular momentum about the long axis. No orbits parented by prograde periodic x2 orbits are found in the pure bar model, but a tiny population (~2%) of short-axis tube orbits parented by retrograde x4 orbits are found. When a central point mass representing a supermassive black hole (SMBH) is grown adiabatically at the center of the bar, those orbits that lie in the immediate vicinity of the SMBH are transformed into precessing Keplerian orbits that belong to the same major families (short-axis tubes, long-axis tubes and boxes) occupying the bar at larger radii. During the growth of an SMBH, the inflow of mass and outward transport of angular momentum transform some x1 and long-axis tube orbits into prograde short-axis tubes. This study has important implications for future attempts to constrain the masses of SMBHs in barred galaxies using orbit-based methods like the Schwarzschild orbit superposition scheme and for understanding the observed features in barred galaxies

    Parquet solution for a flat Fermi surface

    Full text link
    We study instabilities occurring in the electron system whose Fermi surface has flat regions on its opposite sides. Such a Fermi surface resembles Fermi surfaces of some high-TcT_c superconductors. In the framework of the parquet approximation, we classify possible instabilities and derive renormalization-group equations that determine the evolution of corresponding susceptibilities with decreasing temperature. Numerical solutions of the parquet equations are found to be in qualitative agreement with a ladder approximation. For the repulsive Hubbard interaction, the antiferromagnetic (spin-density-wave) instability dominates, but when the Fermi surface is not perfectly flat, the dd-wave superconducting instability takes over.Comment: REVTeX, 36 pages, 20 ps figures inserted via psfig. Submitted to Phys. Rev.

    Development and external validation of prognostic models to predict sudden and pump-failure death in patients with HFrEF from PARADIGM-HF and ATMOSPHERE

    Get PDF
    Background: Sudden death (SD) and pump failure death (PFD) are the two leading causes of death in patients with heart failure and reduced ejection fraction (HFrEF). Objective: Identifying patients at higher risk for mode-specific death would allow better targeting of individual patients for relevant device and other therapies. Methods: We developed models in 7156 patients with HFrEF from the Prospective comparison of ARNI with ACEI to Determine Impact on Global Mortality and morbidity in Heart Failure (PARADIGM-HF) trial, using Fine-Gray regressions counting other deaths as competing risks. The derived models were externally validated in the Aliskiren Trial to Minimize Outcomes in Patients with Heart Failure (ATMOSPHERE) trial. Results: NYHA class and NT-proBNP were independent predictors for both modes of death. The SD model additionally included male sex, Asian or Black race, prior CABG or PCI, cancer history, MI history, treatment with LCZ696 vs. enalapril, QRS duration and ECG left ventricular hypertrophy. While LVEF, ischemic etiology, systolic blood pressure, HF duration, ECG bundle branch block, and serum albumin, chloride and creatinine were included in the PFD model. Model discrimination was good for SD and excellent for PFD with Harrell’s C of 0.67 and 0.78 after correction for optimism, respectively. The observed and predicted incidences were similar in each quartile of risk scores at 3 years in each model. The performance of both models remained robust in ATMOSPHERE. Conclusion: We developed and validated models which separately predict SD and PFD in patients with HFrEF. These models may help clinicians and patients consider therapies targeted at these modes of death. Trial registration number: PARADIGM-HF: ClinicalTrials.gov NCT01035255, ATMOSPHERE: ClinicalTrials.gov NCT00853658

    Interaction of Mesoporous Silica Nanoparticles with Human Red Blood Cell Membranes: Size and Surface Effects

    Get PDF
    The interactions of mesoporous silica nanoparticles (MSNs) of different particle sizes and surface properties with human red blood cell (RBC) membranes were investigated by membrane filtration, flow cytometry, and various microscopic techniques. Small MCM-41-type MSNs (∼100 nm) were found to adsorb to the surface of RBCs without disturbing the membrane or morphology. In contrast, adsorption of large SBA-15-type MSNs (∼600 nm) to RBCs induced a strong local membrane deformation leading to spiculation of RBCs, internalization of the particles, and eventual hemolysis. In addition, the relationship between the degree of MSN surface functionalization and the degree of its interaction with RBC, as well as the effect of RBC−MSN interaction on cellular deformability, were investigated. The results presented here provide a better understanding of the mechanisms of RBC−MSN interaction and the hemolytic activity of MSNs and will assist in the rational design of hemocompatible MSNs for intravenous drug delivery and in vivo imaging

    Epigenetic expansion of VHL-HIF signal output drives multiorgan metastasis in renal cancer.

    Get PDF
    Inactivation of the von Hippel-Lindau tumor suppressor gene, VHL, is an archetypical tumor-initiating event in clear cell renal carcinoma (ccRCC) that leads to the activation of hypoxia-inducible transcription factors (HIFs). However, VHL mutation status in ccRCC is not correlated with clinical outcome. Here we show that during ccRCC progression, cancer cells exploit diverse epigenetic alterations to empower a branch of the VHL-HIF pathway for metastasis, and the strength of this activation is associated with poor clinical outcome. By analyzing metastatic subpopulations of VHL-deficient ccRCC cells, we discovered an epigenetically altered VHL-HIF response that is specific to metastatic ccRCC. Focusing on the two most prominent pro-metastatic VHL-HIF target genes, we show that loss of Polycomb repressive complex 2 (PRC2)-dependent histone H3 Lys27 trimethylation (H3K27me3) activates HIF-driven chemokine (C-X-C motif) receptor 4 (CXCR4) expression in support of chemotactic cell invasion, whereas loss of DNA methylation enables HIF-driven cytohesin 1 interacting protein (CYTIP) expression to protect cancer cells from death cytokine signals. Thus, metastasis in ccRCC is based on an epigenetically expanded output of the tumor-initiating pathway
    • …
    corecore