2,633 research outputs found

    Sim2real and Digital Twins in Autonomous Driving: A Survey

    Full text link
    Safety and cost are two important concerns for the development of autonomous driving technologies. From the academic research to commercial applications of autonomous driving vehicles, sufficient simulation and real world testing are required. In general, a large scale of testing in simulation environment is conducted and then the learned driving knowledge is transferred to the real world, so how to adapt driving knowledge learned in simulation to reality becomes a critical issue. However, the virtual simulation world differs from the real world in many aspects such as lighting, textures, vehicle dynamics, and agents' behaviors, etc., which makes it difficult to bridge the gap between the virtual and real worlds. This gap is commonly referred to as the reality gap (RG). In recent years, researchers have explored various approaches to address the reality gap issue, which can be broadly classified into two categories: transferring knowledge from simulation to reality (sim2real) and learning in digital twins (DTs). In this paper, we consider the solutions through the sim2real and DTs technologies, and review important applications and innovations in the field of autonomous driving. Meanwhile, we show the state-of-the-arts from the views of algorithms, models, and simulators, and elaborate the development process from sim2real to DTs. The presentation also illustrates the far-reaching effects of the development of sim2real and DTs in autonomous driving

    Exploration of the proteomic landscape of small extracellular vesicles in serum as biomarkers for early detection of colorectal neoplasia

    Get PDF
    [[abstract]]Background: Patient participation in colorectal cancer (CRC) screening via a stool test and colonoscopy is suboptimal, but participation can be improved by the development of a blood test. However, the suboptimal detection abilities of blood tests for advanced neoplasia, including advanced adenoma (AA) and CRC, limit their application. We aimed to investigate the proteomic landscape of small extracellular vesicles (sEVs) from the serum of patients with colorectal neoplasia and identify specific sEV proteins that could serve as biomarkers for early diagnosis. Materials and Methods: We enrolled 100 patients including 13 healthy subjects, 12 non-AAs, 13 AAs, and 16 stage-I, 15 stage-II, 16 stage-III, and 15 stage-IV CRCs. These patients were classified as normal control, early neoplasia, and advanced neoplasia. The sEV proteome was explored by liquid chromatography-tandem mass spectrometry. Generalized association plots were used to integrate the clustering methods, visualize the data matrix, and analyze the relationship. The specific sEV biomarkers were identified by a decision tree via Orange3 software. Functional enrichment analysis was conducted by using the Ingenuity Pathway Analysis platform. Results: The sEV protein matrix was identified from the serum of 100 patients and contained 3353 proteins, of which 1921 proteins from 98 patients were finally analyzed. Compared with the normal control, subjects with early and advanced neoplasia exhibited a distinct proteomic distribution in the data matrix plot. Six sEV proteins were identified, namely, GCLM, KEL, APOF, CFB, PDE5A, and ATIC, which properly distinguished normal control, early neoplasia, and advanced neoplasia patients from each other. Functional enrichment analysis revealed that APOF+ and CFB+ sEV associated with clathrin-mediated endocytosis signaling and the complement system, which have critical implications for CRC carcinogenesis. Conclusion: Patients with colorectal neoplasia had a distinct sEV proteome expression pattern in serum compared with those patients who were healthy and did not have neoplasms. Moreover, the six identified specific sEV proteins had the potential to discriminate colorectal neoplasia between early-stage and advanced neoplasia. Collectively, our study provided a six-sEV protein biomarker panel for CRC diagnosis at early or advanced stages. Furthermore, the implication of the sEV proteome in CRC carcinogenesis via specific signaling pathways was explored.[[notice]]補正完

    Overexpression of focal adhesion kinase in vascular endothelial cells promotes angiogenesis in transgenic mice

    Get PDF
    Objective: Focal adhesion kinase is implicated in the regulation of cell adhesion, migration, survival, and cell-cycle progression. However, the functions of focal adhesion kinase in endothelial cell (EC) in vivo remain unclear. This study aims to examine the role of FAK in EC function and angiogenesis in vivo by transgenic mice approach. Method: We generated transgenic mice which overexpressed chicken FAK in vascular endothelial cell under the control of the Tie-2 promoter and enhancer. FAK transgene was detected by RT-PCR, immunoprecipitation, and Western blot. The effect of FAK overexpression on angiogenesis was determined using skin wound healing and ischemia skeleton muscle models. Results: Expression of FAK transgene was detected in all vessel-rich tissues. Expression of FAK protein was verified by antibody specific for the exogenous chicken FAK in lung homogenates and isolated EC. In the wound-induced angiogenesis model, the number of vessels in the granulation tissue of healing wound was significantly increased in the transgenic mouse compared to that of wild-type control mice. Similarly, in the ischemia skeleton muscle model, the density of capillaries was significantly increased in the transgenic mouse. Conclusion: These results indicate that FAK may play an important role in the promotion of angiogenesis in viv

    Conditional knockout of focal adhesion kinase in endothelial cells reveals its role in angiogenesis and vascular development in late embryogenesis

    Get PDF
    Focal adhesion kinase (FAK) is a critical mediator of signal transduction by integrins and growth factor receptors in a variety of cells including endothelial cells (ECs). Here, we describe EC-specific knockout of FAK using a Cre-loxP approach. In contrast to the total FAK knockout, deletion of FAK specifically in ECs did not affect early embryonic development including normal vasculogenesis. However, in late embryogenesis, FAK deletion in the ECs led to defective angiogenesis in the embryos, yolk sac, and placenta, impaired vasculature and associated hemorrhage, edema, and developmental delay, and late embryonic lethal phenotype. Histologically, ECs and blood vessels in the mutant embryos present a disorganized, detached, and apoptotic appearance. Consistent with these phenotypes, deletion of FAK in ECs isolated from the floxed FAK mice led to reduced tubulogenesis, cell survival, proliferation, and migration in vitro. Together, these results strongly suggest a role of FAK in angiogenesis and vascular development due to its essential function in the regulation of multiple EC activities

    Multi-Task Learning for Conversational Question Answering over a Large-Scale Knowledge Base

    Full text link
    We consider the problem of conversational question answering over a large-scale knowledge base. To handle huge entity vocabulary of a large-scale knowledge base, recent neural semantic parsing based approaches usually decompose the task into several subtasks and then solve them sequentially, which leads to following issues: 1) errors in earlier subtasks will be propagated and negatively affect downstream ones; and 2) each subtask cannot naturally share supervision signals with others. To tackle these issues, we propose an innovative multi-task learning framework where a pointer-equipped semantic parsing model is designed to resolve coreference in conversations, and naturally empower joint learning with a novel type-aware entity detection model. The proposed framework thus enables shared supervisions and alleviates the effect of error propagation. Experiments on a large-scale conversational question answering dataset containing 1.6M question answering pairs over 12.8M entities show that the proposed framework improves overall F1 score from 67% to 79% compared with previous state-of-the-art work

    The progression rate of spinocerebellar ataxia type 3 varies with disease stage

    Get PDF
    Background: In polyglutamine (polyQ) diseases, the identification of modifiers and the construction of prediction model for progression facilitate genetic counseling, clinical management and therapeutic interventions. Methods: Data were derived from the longest longitudinal study, with 642 examinations by International Cooperative Ataxia Rating Scale (ICARS) from 82 SCA3 participants. Using different time scales of disease duration, we performed multiple different linear, quadratic and piece-wise linear growth models to fit the relationship between ICARS scores and duration. Models comparison was employed to determine the best-fitting model according to goodness-of-fit tests, and the analysis of variance among nested models. Results: An acceleration was detected after 13 years of duration: ICARS scores progressed 2.445 (SE: 0.185) points/year before and 3.547 (SE: 0.312) points/year after this deadline. Piece-wise growth model fitted better to studied data than other two types of models. The length of expanded CAG repeat (CAGexp) in ATXN3 gene significantly influenced progression. Age at onset of gait ataxia (AOga), a proxy for aging process, was not an independent modifier but affected the correlation between CAGexp and progression. Additionally, gender had no significant effect on progression rate of ICARS. The piece-wise growth models were determined as the predictive models, and ICARS predictions from related models were available. Conclusions: We first confirmed that ICARS progressed as a nonlinear pattern and varied according to different stages in SCA3. In addition to ATXN3 CAGexp, AOga or aging process regulated the progression by interacting with CAGexp

    Compensatory role for Pyk2 during angiogenesis in adult mice lacking endothelial cell FAK

    Get PDF
    Focal adhesion kinase (FAK) plays a critical role during vascular development because knockout of FAK in endothelial cells (ECs) is embryonic lethal. Surprisingly, tamoxifen-inducible conditional knockout of FAK in adult blood vessels (inducible EC–specific FAK knockout [i-EC-FAK-KO]) produces no vascular phenotype, and these animals are capable of developing a robust growth factor–induced angiogenic response. Although angiogenesis in wild-type mice is suppressed by pharmacological inhibition of FAK, i-EC-FAK-KO mice are refractory to this treatment, which suggests that adult i-EC-FAK-KO mice develop a compensatory mechanism to bypass the requirement for FAK. Indeed, expression of the FAK-related proline-rich tyrosine kinase 2 (Pyk2) is elevated and phosphorylated in i-EC-FAK-KO blood vessels. In cultured ECs, FAK knockdown leads to increased Pyk2 expression and, surprisingly, FAK kinase inhibition leads to increased Pyk2 phosphorylation. Pyk2 can functionally compensate for the loss of FAK because knockdown or pharmacological inhibition of Pyk2 disrupts angiogenesis in i-EC-FAK-KO mice. These studies reveal the adaptive capacity of ECs to switch to Pyk2-dependent signaling after deletion or kinase inhibition of FAK
    corecore