173 research outputs found

    A new model-based approach for power plant Tube-ball mill condition monitoring and fault detection

    Get PDF
    AbstractWith the fast growth in intermittent renewable power generation, unprecedented demands for power plant operation flexibility have posed new challenges to the ageing conventional power plants in the UK. Adding biomass to coal for co-fired power generation has become widely implemented practices in order to meet the emission regulation targets. These have impacted the coal mill and power plant operation safety and reliability. The Vertical Spindle mill model was developed through the authors’ work before 2007. From then, the new research progress has been made in modelling and condition monitoring for Tube-ball mills and is reported in the paper. A mathematical model for Tube-ball milling process is developed by applying engineering principles combined with model unknown parameter identifications using a computational intelligent algorithm. The model describes the whole milling process from the mill idle status, start-up to normal grinding and shut-down. The model is verified using on-site measurement data and on-line test. The on-line model is used for mill condition monitoring in two ways: (i) to compare the predicted and measured mill output pressure and temperatures and to raise alarms if there are big discrepancies; and (ii) to monitor the mill model parameter variation patterns which detect the potential faults and mill malfunctions

    Increasing trend of scientists to switch between topics

    Get PDF
    We analyze the publication records of individual scientists, aiming to quantify the topic switching dynamics of scientists and its influence. For each scientist, the relations among her publications are characterized via shared references. We find that the co-citing network of the papers of a scientist exhibits a clear community structure where each major community represents a research topic. Our analysis suggests that scientists tend to have a narrow distribution of the number of topics. However, researchers nowadays switch more frequently between topics than those in the early days. We also find that high switching probability in early career (<12y) is associated with low overall productivity, while it is correlated with high overall productivity in latter career. Interestingly, the average citation per paper, however, is in all career stages negatively correlated with the switching probability. We propose a model with exploitation and exploration mechanisms that can explain the main observed features.Comment: 37 pages, 21 figure

    Bi-level optimal dispatching of distribution network considering friendly interaction with electric vehicle aggregators

    Get PDF
    The widespread application of electric vehicles (EVs) is a positive force driving green development. However, their widespread penetration also poses significant challenges and threats to the security and stable operation of the power grid. To address this urgent issue, this article constructs a bi-level optimal dispatching model fostering collaboration between electric vehicle aggregators and the distribution network. The upper-level optimization targets the minimization of peak-valley differences in the distribution network via considerably arranging power outputs of gas turbines, while the lower-level one focuses on reducing the charging expense of EV aggregators via efficient charging transfer. Note that the charging expense is not only composed of electric cost but also a dynamic carbon emission factor-based cost, which contributes to the electricity economy and carbon reduction concurrently. A geometric mean optimizer (GMO) is introduced to solve the mode. Its efficiency is evaluated against three typical algorithms, i.e., genetic algorithm, great-wall construction algorithm, and optimization algorithm based on an extended IEEE 33-bus system with different charging behaviors of EVs on both a typical weekday and weekend. Simulation results demonstrate that the GMO outperforms other competitive algorithms in accuracy and stability. The peak-valley difference between the distribution network and the total cost of EV aggregators can be decreased by over 98% and 76%, respectively

    Expression of the NRF2

    Get PDF
    Reduced nuclear factor erythroid 2-related factor 2 (NRF2) pathway activity was reported in models of chronic kidney disease (CKD). Pharmacological activation of NRF2 is supposed to improve renal function, but data concerning the NRF2 activity in human CKD are lacking. We investigated the NRF2 target NAD(P)H:quinone oxidoreductase 1 (NQO1) as a readout parameter for NRF2 activity in monocytes of CKD patients (n=63) compared to those of healthy controls (n=16). The NQO1 gene expression was quantified using real-time PCR and the protein content by in-cell Western assays. We found a 3-4-fold increase in NQO1 gene expression in CKD 1–5 (n=29; 3.5 for NQO1/ribosomal protein L41; p<0.001). This was accompanied by a 1.1-fold increase in NQO1 protein (p=0.06). Cardiovascular disease prevalence was higher in CKD 1–5 patients with higher compared to those with lower NQO1 gene expression (p=0.02). In advanced uremia, in dialysis patients (n=34), NQO1 gene expression was less robustly upregulated than that in CKD 1–5, while NQO1 protein was not upregulated. We conclude that in mononuclear cells of CKD patients, the NRF2 pathway is activated by coexisting pathogenic mechanisms, but in advanced uremia, the effectiveness of this upregulation is reduced. Both processes could interfere with pharmacological NRF2 activation

    Multi-objective optimal scheduling considering low-carbon operation of air conditioner load with dynamic carbon emission factors

    Get PDF
    As global temperatures rise and climate change becomes more severely. People realize that air conditioning systems as a controllable resource and play an increasingly important role in reducing carbon emissions. In the past, the operation optimization of air conditioning systems was mainly oriented to user comfort and electricity costs ignoring the long-term impact on the environment. This article aims to establish a multi-objective model of air-conditioning load to ensure user temperature comfort performance and reduce the total cost (i.e., electricity cost and carbon emission cost) simultaneously. Multi Sand Cat Swarm Optimization (MSCSO) algorithm combined with gray target decision-making (GTD) is used to explore optimal solution. Meanwhile four competitive strategies are applied to validate the effectiveness of the proposed method, i.e., genetic algorithm (GA), MSCSO-comfort objective, MSCSO-total electricity cost objective and unoptimization. The simulation results show that the MSCSO-GTD based objective method can significantly reduce total costs while taking into account appropriate indoor temperature comfort

    DeepSF: deep convolutional neural network for mapping protein sequences to folds

    Get PDF
    Motivation Protein fold recognition is an important problem in structural bioinformatics. Almost all traditional fold recognition methods use sequence (homology) comparison to indirectly predict the fold of a tar get protein based on the fold of a template protein with known structure, which cannot explain the relationship between sequence and fold. Only a few methods had been developed to classify protein sequences into a small number of folds due to methodological limitations, which are not generally useful in practice. Results We develop a deep 1D-convolution neural network (DeepSF) to directly classify any protein se quence into one of 1195 known folds, which is useful for both fold recognition and the study of se quence-structure relationship. Different from traditional sequence alignment (comparison) based methods, our method automatically extracts fold-related features from a protein sequence of any length and map it to the fold space. We train and test our method on the datasets curated from SCOP1.75, yielding a classification accuracy of 80.4%. On the independent testing dataset curated from SCOP2.06, the classification accuracy is 77.0%. We compare our method with a top profile profile alignment method - HHSearch on hard template-based and template-free modeling targets of CASP9-12 in terms of fold recognition accuracy. The accuracy of our method is 14.5%-29.1% higher than HHSearch on template-free modeling targets and 4.5%-16.7% higher on hard template-based modeling targets for top 1, 5, and 10 predicted folds. The hidden features extracted from sequence by our method is robust against sequence mutation, insertion, deletion and truncation, and can be used for other protein pattern recognition problems such as protein clustering, comparison and ranking.Comment: 28 pages, 13 figure

    Multiple Frequency Bands Analysis of Large Scale Intrinsic Brain Networks and Its Application in Schizotypal Personality Disorder

    Get PDF
    The human brain is a complex system composed by several large scale intrinsic networks with distinct functions. The low frequency oscillation (LFO) signal of blood oxygen level dependent (BOLD), measured through resting-state fMRI, reflects the spontaneous neural activity of these networks. We propose to characterize these networks by applying the multiple frequency bands analysis (MFBA) to the LFO time courses (TCs) resulted from the group independent component analysis (ICA). Specifically, seven networks, including the default model network (DMN), dorsal attention network (DAN), control executive network (CEN), salience network, sensorimotor network, visual network and limbic network, are identified. After the power spectral density (PSD) analysis, the amplitude of low frequency fluctuation (ALFF) and the fractional amplitude of low frequency fluctuation (fALFF) is determined in three bands: &lt;0.1 Hz; slow-5; and slow-4. Moreover, the MFBA method is applied to reveal the frequency-dependent alternations of fALFF for seven networks in schizotypal personality disorder (SPD). It is found that seven networks can be divided into three categories: the advanced cognitive networks, primary sensorimotor networks and limbic networks, and their fALFF successively decreases in both slow-4 and slow-5 bands. Comparing to normal control group, the fALFF of DMN, DAN and CEN in SPD tends to be higher in slow-5 band, but lower in slow-4. Higher fALFF of sensorimotor and visual networks in slow-5, higher fALFF of limbic network in both bands have been observed for SPD group. The results of ALFF are consistent with those of fALFF. The proposed MFBA method may help distinguish networks or oscillators in the human brain, reveal subtle alternations of networks through locating their dominant frequency band, and present potential to interpret the neuropathology disruptions
    corecore