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As global temperatures rise and climate change becomes more severely. People
realize that air conditioning systems as a controllable resource and play an
increasingly important role in reducing carbon emissions. In the past, the
operation optimization of air conditioning systems was mainly oriented to
user comfort and electricity costs ignoring the long-term impact on the
environment. This article aims to establish a multi-objective model of air-
conditioning load to ensure user temperature comfort performance and
reduce the total cost (i.e., electricity cost and carbon emission cost)
simultaneously. Multi Sand Cat Swarm Optimization (MSCSO) algorithm
combined with gray target decision-making (GTD) is used to explore optimal
solution. Meanwhile four competitive strategies are applied to validate the
effectiveness of the proposed method, i.e., genetic algorithm (GA), MSCSO-
comfort objective, MSCSO-total electricity cost objective and unoptimization.
The simulation results show that the MSCSO-GTD based objective method can
significantly reduce total costs while taking into account appropriate indoor
temperature comfort.
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1 Introduction

With increasing societal attention to energy sustainability (Wang et al., 2022) and global
warming (Wiriyasart and Kaewluan, 2024), experts in the power systems field are
continuously exploring new methods to reduce carbon emissions and steer the power
systems towards a more sustainable direction (Hu and Yi, 2023). The building industry
accounts for approximately 40% of the global electricity consumption with air conditioning
constituting over 50% of the total energy consumption within buildings (Wijaya et al., 2022;
Silva et al., 2023). According to statistics, there are currently 1.2 billion air conditioners in
daily use globally and this number is expected to rise to 4.5 billion by 2050 (Fikiin, 2018).
Against the backdrop of the carbon neutrality goals outlined in the Paris Agreement
(Reyseliani et al., 2022). Meanwhile the government and related enterprise focusing on
carbon emission reduction, and cost accounting for carbon emissions is the necessary
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premise of carbon reduction and objects which should further
attention (Hu et al., 2022). Air conditioning systems as a
significant burden on the power system, not only directly impact
the stability and efficiency of the power system but also have
profound implications for the environmental carbon emission
levels (Yang ZX. et al., 2022).

Currently, research on carbon emissions in the power sector has
become one of the hot topics in the field of power systems. Past
studies primarily focused on assessing and reducing the carbon
footprint of the overall power system (Shi et al., 2023). However,
current optimization scheduling of air conditioning systems often
emphasizes improving user comfort (Hernández et al., 2022) and
reducing electricity costs with relatively less attention given to their
contribution to carbon emission reduction as referenced (Jung and
Jazizadeh, 2019; Huang et al., 2022). Air conditioning systems have
significant potential to reduce the cost of carbon source energy and
lower overall energy costs. Additionally the aggregation and
coordinated control of air conditioning systems not only quickly
alleviate peak load pressures on the power grid (Xie et al., 2022) but
also provide various load transfer and adjustment assistance
methods, contributing to the stable and efficient operation of the
grid (Dong et al., 2023). Against the backdrop of the “dual carbon
goals” aiming to reduce carbon emissions in the power system while
ensuring its efficiency. It is necessary to reexamine the strategies for
controlling the operation of air conditioning systems.

Li et al. (2021) proposed a single-objective optimization method
during air conditioning usage, which combined weighted user
comfort and energy consumption to minimize overall
consumption. This approach provides a comprehensive
assessment of air conditioning usage. In WuCao et al. (2023), a
personal comfort model was established to optimize and control air
conditioners. This model optimizes air conditioning operation based
on electricity prices, outdoor temperatures, and user preferences,
significantly reducing electricity costs while effectively maintaining
user comfort. Satisfactory decision results are achieved using a
multi-objective air conditioning optimization method based on
user comfort and energy consumption. Bingham et al. (2017),
Ohta and Sato (2018), Elnour et al. (202) employed a neural
network-based model to control building air conditioning
systems reducing energy consumption by up to 46% without
compromising indoor comfort and air quality, providing valuable
insights for reducing energy costs in air conditioning systems. Hu
et al. (2019) explored air conditioning frequency control in response
to smart grids building upon real-time dynamic electricity prices,
endowing air conditioning with price responsiveness and grid
interactivity. Lin et al. (2022) presented a multi-objective
optimization model based on air conditioning energy
consumption and thermal comfort, yielding well-balanced
decision results.

Kuo et al. (2017) developed a low-carbon and economic dispatch
planing for isolated power systems, which offers a significant tool for
this field. Utilizing dynamic approaches for carbon assessment, the
study captures the characteristics of the electricity grid’s generation
mix (Khan et al., 2018). When air conditioner operates as a
controllable load, a dual-layer economic scheduling model is
introduced, emphasizing source-load coordination for carbon
reduction (Zh et al., 2023). In the field of low-carbon behavior
modeling, relevant theoretical models have been established. These

models utilize generic algorithms such as GA and particle swarm
optimization (PSO) to maximize profits for all stakeholders and
minimize carbon emissions (Yang et al., 2023). Additionally, to
optimize the parameters of low-carbon models, metaheuristic
algorithms are employed including genetic algorithms, particle
swarm optimization and so on. Ding (2023) exhibited a certain
advantage in optimizing the parameters of low-carbon models
during to the simplicity and lower computational costs of
these methods.

This study aims to investigate an innovative operational control
strategy for air conditioner focusing on the key performance
indicator of minimizing carbon emission costs. The proposed
approach introduces a multi-objective optimization scheduling
method that relies on dynamic carbon emission factors while
considering collaborative operations with air conditioning
vendors. The primary contributions/nolvelties of this
methodology are outlined as follows:

➢ Different to fixed carbon emission factor, the dynamic carbon
emission factor is introducted to accurately and fairly evaluate
the carbon emmission of air conditioners in hour-level. It
offers an effective guidance for low-carbon and low-cost
operation of air conditioner loads;

➢ Unique to single objective optimization, the total cost
(including electric cost and carbon emission cost) and
users’ comfort are intergrated as a multiple objectives to
guide th optimal operations of air conditioners;

➢The proposedMSCSO algorithm in combination with the Grey
Target Decision, aims to obtain the optimal weighted balanced
solution. By considering both indoor temperature comfort and
the reduction of total electricity costs, it seeks to find a solution
that achieves the best balance between these objectives,
thereby maximizing overall efficiency and benefits.

The remaining sections of this paper are organized as follows:
Section 2 presents the modelling of air conditioning operational
characteristics and optimization objectives. Section 3 introduces the
workflow of the MSCSO algorithm combined with the Grey Target
Decision algorithm. Section 4 provides case simulations for the
optimization of the operation of four air conditioners. Finally,
Section 5 offers a summary of this paper.

2 Air conditioner operation
characteristics and optimization
objective modeling

2.1 Characteristics related to air
conditioning operation

Yang et al. (2022b) shows that air conditioning operation is actually
a dynamic process. If continuous operating characteristics cannot be
maintained, it will affect the user’s comfort experience (Lu et al., 2023)
and increase energy consumption costs (Yuan et al., 2023). During the
air conditioning operation control process, the direct load of the air
conditioner Direct Load Control (DLC) (Alrasheedi et al., 2024) is a
strategy used to manage and balance loads in power systems. It involves
adjusting the load of the power system by proactively intervening in the
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operation of air conditioning equipment to respond to changes in system
demand or to optimize system operation.

In air-conditioning direct load control, it is achieved in the
following two ways:

➢ Heating mode: When the indoor real-time temperature is
lower than the lower limit temperature, the air conditioner
turns on the heating mode. The indoor temperature gradually
increases until it reaches the upper limit temperature and the
air conditioner stops working; until the indoor temperature
drops to the lower limit temperature again, the air conditioner
turns on the heating mode again and then the cycle repeats.

➢ Cooling mode: When the indoor real-time temperature is
higher than the upper limit temperature, the air conditioner
turns on the cooling mode. The indoor temperature gradually
decreases until it reaches the lower limit temperature and the
air conditioner stops working; until the indoor temperature
rises to the upper limit temperature again, the air conditioner
turns on the cooling mode again. And then the cycle repeats.

In the paper, the background of the simulation of air
conditioning load optimization operation is based on summer. So
only the cooling mode needs to be considered, its working state is
shown in Figure 1.

2.2 Real-time calculation of indoor
temperature

The operating status of the air conditioner can be adjusted
through changes in indoor temperature in the process of direct load
control of air conditioners. The real-time indoor temperature is
mainly related to the outdoor temperature, room thermal
parameters, air conditioning load operating status and rated
power, which can be described by Eq. 1 as follows:

Tin t + 1( ) �
Tout t + 1( ) − Tout t + 1( ) − Tin t( )( )e −Δt

RreCre Sop t( ) � 0

Tout t + 1( ) − Tout t + 1( ) − Tin t( ) − RrePeηcop( )e −Δt
RreCre Sop t( ) � 1

⎧⎪⎨⎪⎩
(1)

where Tin(t) is the indoor temperature in the tth period; Tout(t + 1)
represents the outdoor temperature in the (t + 1) th period; Rre (Ω)

and Cre(F) are the indoor equivalent of thermal resistance and heat
capacity, respectively; Δt(h) represents the duration of opening or
closing; Pe(kW) and ηcop represent the rated power of the air
conditioner load and coefficient of refrigeration efficiency
respectively; sop(t) denotes the operational state of the air
conditioning load during the t-th time interval; sop(t) � 0 and
sop(t) � 1 represent the standby and operational states, respectively.

2.2.1 Determining the operating state of the air
conditioning load

Although the operating status of the air conditioner and the
start-stop status are not equivalent. The operating status of the air-
conditioning load at the next moment can be determined through
the indoor temperature and start-stop status at that moment. The
determination method is described by Eq. 2 as follows:

Sop t + 1( ) �
0 Sturn t + 1( ) � 0orTin t( )<Tmin

1 Sturn t( ) � 0andSturn t + 1( ) � 1andTin t( )≥Tmax

Sop t( ) Sturn t( ) � 1andSturn t + 1( ) � 1andTmin ≤Tin t( )≤Tmax

1 Sturn t( ) � 1andSturn t + 1( ) � 1andTin t( )≥Tmax

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(2)

where sturn(t) represents the on/off state of the air conditioning load
during the tth time interval where sturn(t) � 0 and sturn(t) � 1
indicate the states of being turned off and turned on,
respectively. Similarly.

According to the condition sop(t + 1) � 1 in Eq. 2, it indicates
that the air conditioning load is in the operational state in the next
time step. Combining this with the condition in For Eq. 1 that the air
conditioning load is in the turned-on state, we can calculate the
duration of the air conditioning system’s operation when it is in the
operational state, which can be expressed by Eq. 3:

τon � RreCre ln
Tmax − Tout t + 1( ) + RrePeηcop
Tout t + 1( ) − Tmin + RrePeηcop

(3)

where τon represents the working time when the air conditioning
system is in working state.

2.2.2 Dynamic carbon emission factor
Currently in China, there are challenges associated with the

average carbon emission factors for electricity including delayed
data updates and difficulties in reflecting temporal and spatial
variations, it has not been updated since 2012 and has lost its
timeliness taking the example of the regional grid’s average carbon
emission factor. Moreover, its broad coverage makes it challenging
to adequately consider the development disparities and temporal
characteristics of non-fossil energy generation especially new energy
sources in different regions.

The existing values represent fixed annual figures lacking the
capability to address dynamic issues. In this paper, we propose a
dynamic carbon emission factor that utilizes a spatiotemporal data
model for the power grid. This approach enables the coupling and
correlation analysis of electricity and carbon emissions within the
grid. By leveraging real-time grid dynamic flow data, the dynamic
carbon emission factor can be calculated on an hourly and minute-
by-minute basis allowing for dynamic assessments of carbon
emissions across different time periods and regions. This
methodology is more conducive to accurate carbon emission cost
calculations and the equitable distribution of carbon emission

FIGURE 1
Direct load control of air conditioning in cooling mode.
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responsibilities. The dynamic carbon emission factor can be
predicted and released to users in advance. Users adjust their
electricity consumption behavior on an hourly basis. After
perceiving the differences in carbon emission factors for
electricity consumption in different time periods in the future,
users, within the range allowed by their own adjustment
capabilities, respond with the goal of maximizing their carbon
reduction, aiming to minimize their carbon footprint.

According to the principle of carbon emission flow transmission
in the power grid, the schematic diagram is shown in Figure 2. For
each node, according to the proportional sharing principle,
considering the active power input externally, the average
converted carbon emission intensity of the injected node is
defined as the carbon emission factor intensity. The carbon
emission intensity of node branch power and node access load
(Si et al., 2023), which can be expressed by Eq. 4:

δi �
Pg × δg +∑j∈ϕi

Pji × δj

Pg +∑j∈ϕi
Pji

(4)

where δi (kgCO2/kWh) and δj (kgCO2/kWh) represent the power
carbon emission factors of the ith and jth load nodes respectively,
Pg(kW) represents the active power output of the power plant,
δg (kgCO2/kWh) connected to the gth load node are the power
carbon emission factors of the connected power plants, Pji (kW)
represents the power carbon emission factors from active power is
injected into the branch from the jth node to the ith node, ϕi
represents the set of connected nodes of the branch from the ith node.

2.3 Optimization target modeling

This section models the carbon emission flow calculation model
as the foundation. Under the premise of satisfying constraints on
user air conditioning cluster switch states and switch durations,
economic costs for users are fully taken into account. At the same
time, the section aims to maximize user comfort and minimize
carbon emission costs. Therefore building upon the carbon emission
flow, this section formulates a multi-objective model for low-carbon
operation of air conditioning loads. The objective function of the
model considering user comfort and reducing the overall electricity
cost that including carbon emission costs is expressed by Eq. 5:
where Eq. 6 represents the associated constraints of Eq. 5.

min f 1 � ∑N
n�1∑H

t�1ωn t( ) ×
																
Tavg
n t( ) − Tset

n t( )[ ]2√
min f2 � ∑N

n�1∑H
t�1sop,n t( ) × τon,n × Pn × ψe t( ) + ψc t( ) × σn t( )[ ]

⎧⎨⎩
(5)

sop,n t( ) � 1
n � 1, 2, . . . , N
t � 1, 2, . . . , H
N � 4
H � 24

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(6)

where f 1 represents the user temperature comfort deviation function; f 2
represents the comprehensive electricity cost function of electricity cost
and carbon emissions;N is the number of air conditioner; ωn(t) is the
indoor temperature demand weight of the nth user in the tth period;
Tavg
n (t) (℃) and Tset

n (t) (℃) are the average indoor temperature and
preset indoor temperature of the nth air conditioner in the tth period
respectively; sop,n(t) is the working status of the nth user in the tth
period when the value is 1, the air conditioner is working, τon,n (h)
represents the duration of the nth air conditioner in the tth period; Pn

(kWh) is the rated power of the nth user’s air conditioning load;H (h)
represents the number of hours in a day; σn(t)(kgCO2/kWh) is the
carbon emission factor for the nth user in the tth time period;
ψe(t)(CNY/kWh) and ψc(t) (CNY/kgCO2) represent the electricity
price and carbon emission price for the tth time, respectively.

3 MSCSO algorithm combined with
gray target decision-making algorithm

3.1 Basic principles of MSCSO algorithm

TheMSCSO algorithm is an intelligent optimization algorithm that
imitates the foraging behavior of sand cats in nature. This algorithm
simulates the two stages of sand cat foraging behavior: searching for
prey and attacking prey (Seyyedabbasi and Kiani, 2023).

3.1.1 Initialization
In a D-dimensional problem, a sand cat represents a 1 × Dmatrix,

where each sand cat corresponds to a solution to the problem. The sand
cat population matrix Cati � [x1, x2, . . . , xD], i � pop(1, 2 . . . ,N)
where pop represents the population size and N is the maximum
population size. During the operation of the MSCSO algorithm based
on the size of the problem (Npop × ND). The sand cat population

FIGURE 2
Grid carbon emission flow transmission schematic diagram.
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matrix Cati � [x1, x2, . . . , xD] is initialized. The specific form of the
initialization matrix is expressed by Eq. 7:

Cati �

X1

.

.
Xi

.

.
XN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
N×D

�

x11

.

.
x1j

.

.
x1j

x1j

.

.
xij

.

.
xnj

x1D

.

.
xiD

.

.
xND

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
N×D

(7)

where Xi represents the ith sand cat group; xij represents the
dimension of the ith population in the sand cat population.

The fitness function of the sand cat population is
F � f(Cati) � f(x1, x2, . . . , xD), and the specific matrix form is
expressed by Eq. 8:

F �

F1

.

.
Fi

.

.
FN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
N×1

�

f x11, x12, . . . , x1D( )
.
.

f xi1, xi2, . . . , xiD( )
.
.

f xn1, xn2, . . . , xnD( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
N×1

(8)

3.1.2 Searching for prey stage
In the stage of searching for prey, the sand cat’s hearing can

explore the location of the prey by perceiving hearing within 2 kHz.

In the mathematical model, According to the working principle of
the algorithm the process of gradually decreasing linearly from 2 to
0 after iteration is simulated and represents this process using
sensitive Factors →

sc
The mathematical form is expressed by Eq. 9:

→
sc
� sb − 2 × sb × KP

Kmax
(9)

where sb represents the maximum hearing limit of the simulated
sand cat which is set to 2; KP represents the current number of
iterations; Kmax represents the maximum number of iterations.

During the search process in order to ensure that the search
space falls into a local optimum, this search process requires position
updating based on random position changes during the search
process. This behavior can be defined by the different sensitivity
ranges of each sand cat using Eq. 10:

→
sa
� →

sc
× rand 0, 1( ) (10)

The parameter variable that realizes the transformation of
searching for prey and attacking prey is expressed as →

S . This
parameter variable can balance the transformation of the two
stages and is expressed by Eq. 11:

→
S
� 2| × →

sa
−→

sc

∣∣∣∣∣ (11)

When searching for prey position in the algorithm, the sand
cat can iterate its position based on the current position,
sensitivity range and optimal solution which can be expressed
by Eq. 12:

FIGURE 3
MSCSO algorithm combined with gray target decision-making flow chart.
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→
X

t + 1( ) � →
sa
· →

Lb
−rand 0, 1( ) ·→

Lc
( ) (12)

where →
sa
represents the sensitivity range; →

Lb
represents the optimal

solution; →
Lc

represents the current position.

3.1.3 Attacking prey stage
During the process of attacking prey, the sand cat uses a 360-

degree range around its current position as a rotation angle. This
involves randomly selecting an angle for the attack, ensuring both
the avoidance of getting stuck in local optima and a more
accurate emulation of the sand cat’s hunting behavior by Eqs
13, 14.

→
Lr
� | rand 0, 1( ) ·→

Lb
−→

Lc | (13)

→
X

t + 1( ) � →
Lb
−→

sa
·→
Lr
· cos θ( ) θ ∈ 0, 360°( ) (14)

where→
Lr
represents the random position updated by the sand cat; θ

represents the search angle.

3.1.4 Transformation into exploring and attacking
prey stages

The parameter variables that realize the conversion of searching
for prey and attacking prey are expressed as →

S
, |→

S
| > 1 means

exploring prey, |→
S
| ≤ 1 means attacking prey which progress can be

expressed by Eq. 15.

→
X

t + 1( ) � ⎧⎨⎩→
sa
· →

Lb
−rand 0, 1( ) ·→

Lc
( ) |→

S
> 1|

→
Lb
−→

sa
·→
Lr
· cos θ( ) |→

S
≤ 1| (15)

3.2 Basic principles of gray target
decision-making

By employing the MSCSO algorithm for two objectives and
obtaining numerous solutions based on diverse requirements, this

paper adopts an approach that combines Grey Target Decision to
derive the optimal decision solution.

The Grey Target Decision method is primarily based on considering
multiple scenarios and objectives. Essentially, the grey target represents
the region of satisfactory outcomes, with a designated target center in a
sequence set. The proximity to the target center reflects the superiority of
the outcome,where closer distances indicate better performance. The core
concept revolves around identifying data in a set of sequences that is
closest to the target value, forming a reference sequence. Subsequently, a
grey target is constructed using this reference sequence with the reference
sequence as the target center. The distance between each data sequence in
the information space and the target center is referred to as the target
center distance and the solutions are ranked based on the magnitude of
these distances.

3.2.1 Establishing sample matrix
For the MSCSO algorithm targeting two objectives from the set

of numerous solutions obtained based on different requirements: m
solutions can be obtained; each solution contains n objectives.
Within the ith solution, the jth objective value is designated as
an element of a newly created sample matrix denoted as
xi(j) (i � 1, 2, . . . , m; j � 1, 2, . . . , n). The sample matrix is
denoted as X � [xi(j)]m×n, the specific solution method is using
with Eqs 16, 17, as follows

X � xi j( )[ ]m×n � Xmin + xi j( ) − x j( )min

x j( )max − x j( )min

X max −Xmin( ) (16)

X � xi j( )[ ]m×n �
x1 1( )
x2 1( )
. . .

xm 1( )

x1 2( )
x2 2( )
. . .

xm 2( )

. . .

. . .

. . .

. . .

xm n( )
xm n( )
. . .

xm n( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
m×n

(17)

whereXmax,Xmin represent the maximum and minimum values of the
normalized fitness function; x(j)max, x(j)min represent the maximum
and minimum target values of the jth non-dominated solution; X is a
sample matrix containing the normalized fitness values of all solutions.

TABLE 1 Air conditioning related parameters.

Air conditioner No. Rac (°C/kW) Cac (kWh/°C) Nac Pac (kW) Working hours

Air conditioner number 1 5.47 0.14 2.1 4.0 09:00–18:00

2 5.51 0.17 1.2 2.3 09:00–18:00

3 6.20 0.16 1.8 3.5 00:00–08:00, 18:00–24:00

4 5.73 0.21 1.5 2.7 00:00–08:00, 18:00–24:00

TABLE 2 Electricity prices and carbon prices at each moment within 24-h.

Time (hour) 1 2 3 4 5 6 7 8 9 10 11 12

Electricity prices (CNY/kWh) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.5 0.7 0.7 0.7 0.5

Dynamic CEFs (kgCO2/kWh) 0.75 0.75 0.8 0.8 0.7 0.7 0.65 0.5 0.45 0.4 0.35 0.3

Time (hour) 13 14 15 16 17 18 19 20 21 22 23 24

Electricity prices (CNY/kWh) 0.5 0.5 0.5 0.7 0.7 0.7 0.7 0.9 0.9 0.9 0.5 0.3

Dynamic CEFs (kgCO2/kWh) 0.25 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.7 0.75 0.75 0.8

The meaning of the bold values represent from 13:00 to 24:00.
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3.2.2 Determine the target center
Select the target value as a cost indicator, that is expressed by Eq. 18.

yi j( ) � w j( ) − xi j( )
max max

1≤ i≤m
xi j( ) − w j( ), w j( ) − min

1≤ i≤m
xi j( ){ } (18)

where w(j) expressed as the average value of each column of the
sample matrix by Eq. 19

w j( ) � ∑m
i�1xi j( )
m

(19)

Based on this, the decision matrix is defined as
Y � yi(j)(i � 1, 2, . . . , m; j � 1, 2, . . . , n). The maximum value in

each column represents an element of the target center vector. Thus
the target center vector can be obtained by Eq. 20 as follows:

yo � y 1( )max, . . . , y j( )max, . . . , y n( )max{ } (20)

where y(j)max represents the maximum value of the jth
objective function.

3.2.3 Find the best decision
The method of minimum center distance is used to

determine the optimal solution of the target value (Liu et al.,
2022) by Eq. 21.

di � yi − yo

∣∣∣∣ ∣∣∣∣ � ∑n

i�1w j( ) yi j( ) − yo

∣∣∣∣ ∣∣∣∣ (21)

FIGURE 4
(A) Hourly electricity prices and carbon prices; (B) Hourly ideal indoor and outdoor temperature.

FIGURE 5
Optimization results: (A) Air conditioner operating states; (B) Optimization solutions different strategies.
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FIGURE 6
Indoor temperature changes of different air conditioners under different strategies. (A) air conditioner 1; (B) air conditioner 2; (C) air conditioner 3;
(D) air conditioner 4.

FIGURE 7
(A) Variation chart of different air conditioning comfort indexes under different strategies. (B)Change chart of total cost of electricity under different
strategies.
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Figure 3 shows the chart flow of the MSCSO algorithm combined
with gray target decision-making. where di represents the minimum
center distance which helps us explore the optimal solution.

3.3 MSCSO algorithm combined with gray
target decision-making flow chart

MSCSO algorithm

4 Case studies

During the simulation optimization process, the relevant parameters
of the air conditioner are set as shown in Table 1. The hourly electricity
price and carbon price are designed for 24 h a day as shown in Table 2,
(Zhang et al., 2023). Dynamic carbon emission factor exhibit a trend of
being low during the day and high during the night clean and renewable
energies are considered such as solar power generation. During the day,
the proportion of renewable energy generation is larger resulting in a
small electric carbon factor. On the contrary when solar resources
disappear at night, the system becomes more reliant on traditional

power supply primarily provided by fossil fuel-based power generation
equipment such as coal-fired power plants the proportion of renewable
energy generation is relatively low at night and the carbon emission
factor is large in Figure 4A.

The ideal indoor temperature and actual outdoor temperature
are also set as shown in Figure 4B. The maximum number of
iterations and the number of populations of all algorithms are
exactly the same, the maximum number of iterations K max =
500 and the number of populations Pop = 200. Figure 5A shows
simulation of the air conditioner operating State. There are two
dimensions in Pareto fronts in Figure 5B. It shows the MSCSO-GTD
strategy’s trade-off ability in multi-objective solution sets.

Figure 5A shows simulation of the air conditioner operating State.
There are two dimensions in Pareto fronts in Figure 5B. It shows the
MSCSO-GTD strategy’s trade-off ability in multi-objective solution
sets. In Figure 5B, the solutions obtained fromMSCSO-f1 are close to
the minimum value on the comfort index axis, while the values on the
total cost axis are the highest. This indicates that this decision method
places special emphasis on the weight of comfort, diminishing the
impact of total cost. Similarly, the solutions obtained fromMSCSO-f2
are close to the minimum value on the total cost axis, while the values
on the comfort index axis are the highest. This suggests that this

FIGURE 8
Cost and comfort indexes under different strategies. (A) air conditioner 1; (B) air conditioner 2; (C) air conditioner 3; (D) air conditioner 4.
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decision method prioritizes the weight of total cost, mitigating the
influence of comfort. It is worth noting that the solutions without
optimization and those obtained from MSCSO-f1 are similar
indicating that under regular default conditions, the system
automatically tends to prioritize user comfort neglecting the
impact of total cost. This study provides insights into balancing
these two aspects. Compared to the GA algorithm, MSCSO-GTD-
f1, f 2 achieves a more balanced consideration of user comfort and
total cost issues, aligning well with the optimal expectations of users
and society regarding air conditioning usage.

The indoor temperature variations of different air conditioners
under different strategies are shown in Figure 6. For air conditioners
1 and 2 during the working hours from 9:00 to 18:00, MSCSO-GTD-
f1, f 2 strategy results in the indoor average temperature being very
close to the set ideal temperature compared to other strategies.
Similarly, for air conditioners 3 and 4, during the working hours
from 00:00 to 08:00 and 18:00 to 24:00. MSCSO-GTD-f1, f 2 strategy
also leads to the indoor average temperature being very close to the
set ideal temperature with a temperature deviation within 2.5°C in
Figure 5B. This indicates that MSCSO-GTD-f1, f 2 can significantly
meet the requirements in terms of user comfort.

As illustrated in Figure 7A showing the changes in comfort index
for different air conditioners under different strategies. Figure 7B
displays the variations in total power cost under different strategies,
confirming that MSCSO-GTD-f1, f 2 compared to other strategies. It
exhibits a certain advantage in power cost savings. Particularly
compared to the unoptimized and MSCSO-f 1 strategies, power costs
can be saved by approximately 16%–30%.

Figure 8 depicts the cost and comfort index under different
strategies. The trends exhibited by the four air conditioners under
different strategy optimizations are generally similar. It can be observed
that without optimization, both carbon emission costs and electricity
costs are high which contradicts the low-carbon concept. MSCSO-f1,
MSCSO-f2 demonstrate significant advantages in their respective
optimized indicators. However they cannot achieve a balanced
decision in terms of the other corresponding indicator. In the
context of the low-carbon operation of the air conditioners studied
in this paper, a crucial aspect is reducing carbon emission costs.
MSCSO-f1 and MSCSO-f2 show significant disadvantages in
reducing carbon emission costs. In comparison, MSCSO-GTD-f1, f 2
exhibits an advantage in carbon emission cost savings of approximately
75%–90% compared to these two single-objective decision methods.
This aligns with the objective of the low-carbon operation research
conducted in this paper. Compared to GA, MSCSO-GTD-f1, f 2 holds
an advantage in both carbon emission costs and electricity costs,
resulting in an overall cost savings of around 10%. Particularly, it
demonstrates a significant potential of MSCSO-GTD-f 1, f 2 for carbon
reduction in the aspect of carbon emission costs. Meanwhile the
comfort index for users can still maintain a satisfactory level.
MSCSO-GTD algorithm is excellent in global and local search, and
can effectively maintain the balance between global and local search
performance. This advantage is shown in this paper as follows:
Compared with unoptimized and genetic algorithms, MSCSO-GTD
has the lowest carbon emission cost, and the obtained solution can also
well meet the user comfort and total cost optimization, which reflects
the huge advantages of the algorithm in maintaining the balance
between global and local search performance, and the algorithm has
fast convergence speed and accuracy.

5 Conclusion

This paper considers the multi-objective decision-making problem
of low-carbon operation of air-conditioning load. How to better achieve
the decision-making balance problem for the two goals of user comfort
and total electricity cost on the basis of being as low -carbon as possible,
using MSCSO-GTD and dynamic electric carbon The research method
of combining factors explored the dual-objective balance problem of
low-carbon cost measurement, user comfort and total electricity cost.
Finally the following conclusions were obtained:

➢ The algorithm employed in this paper belongs to heuristic
algorithms and has demonstrated excellent optimization
results in the context of weak optimization problems
presented in this paper. However, when dealing with the
output optimization of devices such as generators in a
distribution network, more complex constraints, such as
start-stop constraints and ramping constraints, need to be
considered. In such cases, the algorithm proposed in this
paper may not be as applicable.

➢ Compared to the single-objective MSCSO, the proposed dual-
objective MSCSO-GTD can overcome the limitations of
overlooking other objectives in the single-objective research
process. Most importantly, the method proposed for low-
carbon cost control exhibits significant potential;

➢ Compared with the non-optimized and GA algorithm, more
satisfactory optimization indicators were achieved in the test
for the optimized operation of four air conditioners, especially
in terms of low-carbon cost control. The respective
comparisons were close to 20% and 13% reduction; in the
total cost indicators, there are reductions of nearly 33% and
20%, respectively;

➢ Compared with the electricity price, the carbon unit price is
lower; the electricity price plays a dominant role in the
algorithmic equilibrium decision-making process in many
cases, resulting in sometimes unsatisfactory optimization
results guided by the carbon price. A higher carbon unit
price may achieve a more effective low-carbon economy,
carbon runs the guiding role. With the continuous increase
in the proportion of new energy installations and the
establishment of a more robust carbon trading market in
the electricity system, enhanced price incentives, and more
standardized carbon trading, the low points in both electricity
user net loads and dynamic carbon emission factors may
overlap in the future.
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