
ORIGINAL RESEARCH
published: 03 August 2018

doi: 10.3389/fncom.2018.00064

Multiple Frequency Bands Analysis
of Large Scale Intrinsic Brain
Networks and Its Application in
Schizotypal Personality Disorder
Shouliang Qi1*, Qingjun Gao1, Jing Shen2, Yueyang Teng1, Xuan Xie1, Yueji Sun3

and Jianlin Wu2*

1Sino-Dutch Biomedical and Information Engineering School, Northeastern University, Shenyang, China, 2Department
of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China, 3Department of Psychiatry and Behavioral
Sciences, Dalian Medical University, Dalian, China

Edited by:
Dan Chen,

Wuhan University, China

Reviewed by:
Yifeng Wang,

University of Electronic Science and
Technology of China, China

Zhen Yuan,
University of Macau, Macau

*Correspondence:
Shouliang Qi

qisl@bmie.neu.edu.cn
Jianlin Wu

cjr.wujianlin@vip.163.com

Received: 04 April 2018
Accepted: 17 July 2018

Published: 03 August 2018

Citation:
Qi S, Gao Q, Shen J, Teng Y, Xie X,

Sun Y and Wu J (2018) Multiple
Frequency Bands Analysis of Large

Scale Intrinsic Brain Networks and Its
Application in Schizotypal

Personality Disorder.
Front. Comput. Neurosci. 12:64.
doi: 10.3389/fncom.2018.00064

The human brain is a complex system composed by several large scale intrinsic networks
with distinct functions. The low frequency oscillation (LFO) signal of blood oxygen
level dependent (BOLD), measured through resting-state fMRI, reflects the spontaneous
neural activity of these networks. We propose to characterize these networks by applying
the multiple frequency bands analysis (MFBA) to the LFO time courses (TCs) resulted
from the group independent component analysis (ICA). Specifically, seven networks,
including the default model network (DMN), dorsal attention network (DAN), control
executive network (CEN), salience network, sensorimotor network, visual network and
limbic network, are identified. After the power spectral density (PSD) analysis, the
amplitude of low frequency fluctuation (ALFF) and the fractional amplitude of low
frequency fluctuation (fALFF) is determined in three bands: <0.1 Hz; slow-5; and slow-4.
Moreover, the MFBA method is applied to reveal the frequency-dependent alternations of
fALFF for seven networks in schizotypal personality disorder (SPD). It is found that seven
networks can be divided into three categories: the advanced cognitive networks, primary
sensorimotor networks and limbic networks, and their fALFF successively decreases in
both slow-4 and slow-5 bands. Comparing to normal control group, the fALFF of DMN,
DAN and CEN in SPD tends to be higher in slow-5 band, but lower in slow-4. Higher
fALFF of sensorimotor and visual networks in slow-5, higher fALFF of limbic network in
both bands have been observed for SPD group. The results of ALFF are consistent with
those of fALFF. The proposed MFBA method may help distinguish networks or oscillators
in the human brain, reveal subtle alternations of networks through locating their dominant
frequency band, and present potential to interpret the neuropathology disruptions.

Keywords: intrinsic brain network, resting sate fMRI, power spectral density, low-frequency fluctuation,
schizotypal personality disorder

INTRODUCTION

Resting state functional MRI (rs-fMRI) has been considered as a powerful tool
in discovery science of human brain (Biswal et al., 2010; Buckner et al., 2013).
Spontaneous low-frequency oscillations (LFOs) in the resting state blood oxygen
level dependent (BOLD) signal can be acquired through rs-fMRI in vivo (Fox and
Raichle, 2007), and the signals are thought to reflect spontaneous neuronal activity.
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Since Biswal et al. (1995) demonstrated that the signals in
some spatially distributed brain regions were synchronized or
correlated significantly in the motor system, many other brain
systems have been discovered. These distributed brain regions
construct different large-scale intrinsic connectivity networks
(ICNs), each of which may correspond to one specific function
(van den Heuvel and Hulshoff Pol, 2010; Raichle, 2011). Some
representative, important and consistently reported ICNs include
the default mode network (DMN), the dorsal attention network
(DAN), the control executive network (CEN), the silence
network, the somatomotor, visual and auditory networks.

There are at least two categories of data-driven approaches
which have been widely employed to identify large-scale ICNs
from resting-state fMRI data for further functional connectome
analysis in time domain. The first category is the independent
component analysis (ICA; Calhoun et al., 2001). Through ICA,
fMRI data is decomposed into a summation of independent
components (ICs), and each component contains a weighted
set of voxels (i.e., the component’s spatial map) and a single
time course (TC) that is common to those identified voxels
(Beckmann and Smith, 2004). The second is to do clustering
analysis based on voxel-wised rs-fMRI signals (Bellec et al.,
2006; Lashkari et al., 2010; Blumensath et al., 2013; Thirion
et al., 2014). For example, Yeo et al. (2011) identified seven
coarse-grained ICNs and 17 fine-grained ICNs using clustering
algorithm based on 1000 subjects’ rs-fMRI data from Human
Connectome Project. Combination of these two methods (ICA
and clustering method) might be beneficial, but has not been
studied.

Analysis of rs-fMRI data in frequency domain is another
important alternative to the temporal-spatial analysis. Zang
et al. (2007) and Zou et al. (2008) proposed two Fast Fourier
Transform (FFT) based indices of LFO amplitude: (1) amplitude
of low frequency fluctuations (ALFF); (2) fractional amplitude
of low frequency fluctuations (fALFF). ALFF indicates the
power in the frequency band of 0.01–0.1 Hz, and fALFF is
the power in 0.01–0.1 Hz divided by the total power in the
entire detectable frequency range. Furthermore, Buzsaki and
colleagues proposed the model that the power spectrum of
neuronal oscillations forms a linear progression on the natural
logarithmic scale, indicating that the oscillations can be separated
into several independent frequency bands and each band might
correspond a distinct oscillator with specific property and
physiological function (Penttonen and Buzsaki, 2003; Buzsáki
and Draguhn, 2004). Inspired by these observation, spontaneous
LFOs in rs-fMRI have been decomposed into four frequency
bands, slow-5 (0.01–0.027 Hz), slow-4 (0.027–0.073 Hz), slow-3
(0.073–0.198 Hz) and slow-2 (0.198–0.25 Hz; Zuo et al., 2010).
It has been demonstrated that amplitudes of LFOs in slow-4
band were higher than that in slow-5 in some regions including
the basal ganglia, thalamus and precuneus, whereas the opposite
trend was found in lingual gyrus, middle temporal gyrus, inferior
frontal gyrus and ventromedial frontal gyrus (Zuo et al., 2010;
Han et al., 2011; Yu et al., 2014). Recently this approach
has been employed to reveal the frequency-dependent ALFF
alternation in neurological and psychiatry disorders, such as
mild cognitive impairment (Han et al., 2011), epilepsy (Wang Z.

et al., 2014; Wang L. et al., 2016), internet gaming disorder
(Lin et al., 2015), social anxiety disorder (Zhang et al., 2015),
depression (Yue et al., 2015) and insomnia (Zhou et al.,
2016).

In the present work, we proposed to do multiple frequency
band analysis (MFBA) of large scale intrinsic brain networks.
Specifically, the ALFF/fALFF in frequency band of <0.1 Hz,
slow-5 and slow-4 are characterized using the TCs of intrinsic
brain networks. It is different with previously introduced
MFBA which is based on the TCs of voxels or atlas-defined
regions. Interpretations of the altered ALFF in some regions
or clusters are hard because spatially distinct brain regions
might belong to the same intrinsic brain networks (Zuo
et al., 2010; Yeo et al., 2011). Moreover, the TC of intrinsic
brain network is more robust than that of single voxel or
regions to the disturbance of head motion, respiration and
vascular pulsatility (Zuo et al., 2010). Except one study on
power spectrum of TC of DMN in schizophrenia (Mingoia
et al., 2013), to our best of knowledge, MFBA of large
scale intrinsic brain networks has not been systemically
investigated.

Schizotypal personality disorder (SPD) is the prototypical
schizophrenia spectrum personality disorder, and shares
abnormalities of gene, phenomenology and cognition with
individuals with schizophrenia (Siever and Davis, 2004). SPD
is usually characterized by delusion, no obvious hallucinations,
peculiar thinking or behavior and lack of communication
between people (Hur et al., 2016). According to the Diagnostic
and Statistical Manual (DSM), the subjects with SPD are
always suspicious, arrogant, and easily produce a sense of
shame1. However, subjects with SPD have rarely been exposed
to antipsychotic medications and hospitalization, which are
inherent confounds to schizophrenia. These two features have
made SPD the ideal model to reveal the core processes of
schizophrenia (Rosell et al., 2014).

Comparing to numerous investigations using structural MRI
and task-related fMRI, few studies have been conducted using
rs-fMRI (Hazlett et al., 2012; Fervaha and Remington, 2013).
Among the few studies, we have previously demonstrated the
altered default mode network functional connectivity in SPD
(Zhang et al., 2014), and Gerretsen et al. (2014) have found
that increased connectivity in DMN, the self-referential network
(SNR) and DAN. Overall, MFBA of large scale intrinsic brain
networks in SPD has not been systemically investigated. Hence,
we propose a hypothesis that the ALFF/fALFF in three frequency
bands of <0.1 Hz, slow-5 and slow-4 in SPD are different with
those in normal control groups.

MATERIALS AND METHODS

Participants
Participants were 18 normal controls (NC; all male, average
age: 20.3 ± 0.9 years, 19–22 years) and 18 patients (all male,
average age: 19.7 ± 0.9 years, 18–21 years) who met the
criteria for SPD with a full diagnostic structured interview

1https://www.psychiatry.org
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for DSM-IV Personality Disorders (Millon and Davis, 1996).
They were screened from 3000 freshmen of one university. All
participants were evaluated by the Scale for the Assessment of
Negative Symptoms (SANS) and the Scale for the Assessment
of Positive Symptoms (SAPS; Andreasen, 1989). None of
the healthy controls has history of neurological diseases, any
substance dependance, or clinically significant head trauma.
None of the SPD patients was previously hospitalized or
prescribed antipsychotic medications. This study was approved
by the Medical Ethics Committee of Affiliated Zhongshan
Hospital of Dalian University and was in accordance with
the 1964 Helsinki Declaration and its later amendments
or comparable ethical standards. All subjects gave written
informed consent in accordance with the Declaration of
Helsinki.

MRI Data Acquisition
All participants underwent structural and functional MRI scan
using a three TMR scanner (Siemens, Verio, Germany) with
one 8-channel head coil. The foam pads were used to fix the
subjects’ head and prevent motion artifact. The T1-weighted
images were acquired using a magnetization prepared rapid
gradient echo (MPRAGE) sequence, and the protocol parameters
were as follows: repetition time (TR) = 2300 ms; echo time
(TE) = 3.0 ms; inversion time (TI) = 900 ms; flip angle = 9◦;
slice thickness = 1.0 mm; no interslice gap; 176 sagittal slices;
matrix size = 256 × 256. In addition, T2-weighted images
were also taken to exclude potential pathological alternations
of the brain. The resting state fMRI was performed with
a gradient-echo planar imaging (EPI) sequence. The specific
EPI parameters are TR = 2000 ms, TE = 30 ms, flip
angle = 90◦, slice thickness = 4.0 mm, 1.0 mm interslice gap,
32 contiguous axial slices, matrix size = 64 × 64, field of
view (FOV) = 240 × 240 mm2, 180 time points. Subjects were
asked to relax and think of nothing in particular with eyes
closed but were requested not to fall asleep. Wakefulness was
confirmed immediately after the scanning session. The datasets
generated for this study can be found in the repository of
FigShare2.

Multiple Frequency Band Analysis of Large
Scale Intrinsic Brain Networks
As illustrated in Figure 1A, the proposed MFBA of large scale
intrinsic brain networks mainly consists of five steps. First, the
rs-fMRI data is preprocessed through slice-timing correction,
motion correction, normalization and smoothing. Second, the
spatial mapping of independent components (ICs) and TCs are
obtained through group ICA. Third, the large scale intrinsic
brain networks are constructed through combining some ICs.
Forth, the TCs are transformed into frequency domain and
divided into three bands: <0.1 Hz; slow-5; slow-4. Fifth, the
fALFF is calculated for each IC in three frequency bands and
compared betweenNC group and SPD group. These five steps are
represented schematically in Figures 1B–F, respectively. Detailed
approaches are elucidated as follows.

2https://figshare.com/s/3e4f9be7266f61e6c74a

Image Preprocessing
The first 10 volumes of each functional time series were
removed, given that the initial MRI signals are unstable
and participants need time to adapt the circumstances. The
remaining 170 volumes (or time points) of images were
analyzed. Subsequently slice-timing correction and head-motion
correction (a least squares approach and a six-parameter
spatial transformation) were performed. After EPI images were
normalized to standard Montreal Neurological Institute space
and resampled to 3 × 3 × 3 mm3, an isotropic Gaussian filter
of 6 × 6 × 6 mm3 full width at half maximum (FWHM)
was used to realize spatial smoothing. The data with head
motion> 3.0 mm or 3.0◦ of maximal rotation were discarded.
All the preprocessing was completed using Data Processing
Assistant for Resting-State fMRI (DPARSF; Yan and Zang,
2010) based on Statistical Parametric Mapping (SPM8)3 and
Resting-state fMRI Data Analysis Toolkit (REST4; Song et al.,
2011).

Group Independent Component Analysis
The preprocessed data was decomposed into a set of independent
components characterizing by the TCs and associated spatial
maps, through the Infomax algorithm within the GIFT software5

(version 3.0a). Using minimum description length algorithm (Li
et al., 2007), the number of ICs is estimated to be 28 for NC group
and 29 for SPD group, respectively. Different numbers of ICs are
resulted from the observation that the visual network appearing
as one IC in NC group is divided into two ICs for SPD group.

Identification of Large Scale Intrinsic Brain Networks
For the IC selection, we first remove the ICs which have
high spatial overlap with the vascular, ventricular, motion,
and susceptibility artifacts (Allen et al., 2011). Second, to
help evaluate the IC further, we calculate two measures
from the spectra of TC of each IC: the dynamic range;
the spectral power ratio of low frequency (<0.1 Hz)
to high frequency (0.15–0.25 Hz; Rummel et al., 2013).
The IC with higher dynamic range and spectral power
ratio has high probability of being the one of large scale
intrinsic brain networks, according to the expectation that
TCs should be dominated by low frequency fluctuations.
Fourteen ICs are determined as certain components of
intrinsic networks and kept for further matching between
NC and SPD groups and being assigned to different
networks.

With the large scale intrinsic brain networks defined by Yeo
et al. (2011) as the reference, seven intrinsic brain networks are
constructed through combining some ICs identified by visual
inspection. The seven networks are the DMN, executive control
network, DAN, salience network, visual network, sensorimotor
network and limbic network. After setting the Z-score threshold
as 0.5 (i.e., the voxel with Z-score <0.5 is set a Z-score of
zero), the spatial overlap ratios between corresponding ICs in

3http://www.fil.ion.ucl.ac.uk/spm
4http://www.restfmri.net
5http://mialab.mrn.org/software/gift/index.html

Frontiers in Computational Neuroscience | www.frontiersin.org 3 August 2018 | Volume 12 | Article 64

https://figshare.com/s/3e4f9be7266f61e6c74a
http://www.fil.ion.ucl.ac.uk/spm
http://www.restfmri.net
http://mialab.mrn.org/software/gift/index.html
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Qi et al. Multiple Frequency Bands Analysis

FIGURE 1 | The schematic diagram for the procedures of multiple frequency band analysis (MFBA) of large scale intrinsic brain networks. (A) The overview of MFBA.
(B) The rs-fMRI data is preprocessed through slice timing correction, motion correction, smoothing and normalization. (C) Spatial mapping of independent
components (ICs) and time courses (TCs) are obtained through group independent component analysis (ICA). (D) Various large scale intrinsic brain networks are
spatially constructed through combining some ICs. (E) The TCs are transformed into frequency domain using Welch method and divided into three bands: <0.1 Hz;
slow-5; slow-4. (F) The fractional amplitude of low frequency fluctuations (fALFF) is calculated for each IC in three frequency bands and compared between normal
control group and schizotypal personality disorder (SPD) group.

NC and SPD groups are calculated. Meanwhile, the Pearson
correlation coefficients between Z-scores of voxels within ICs
of NC group and those of voxels within corresponding ICs
of SPD group are obtained. According to the criteria of
the maximal overlap ratio and correlation coefficient, each
interested IC in NC group can find its counterpart in SPD
group.

Power Spectral Density Analysis
The TC associated with each individual’s component assigned
to various intrinsic brain networks is transformed from
the time domain to the frequency domain through Welch’s
(1967) method, as previously used by Mingoia et al. (2013).
Specifically, the power spectrum is obtained by pwelch, a Matlab
signal processing toolbox. Through dividing the input signal
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(170 points) into eight sections of equal length, each with
50% overlap, the power spectrum density with 129 bins of
0.0019 Hz, ranged from 0 Hz to 0.25 Hz, can be generated.
As the examples shown in Figure 1E, the distributions of
averaged power spectrum density in both NC and SPD groups
are produced for further analysis.

ALFF/fALFF in Multiple Frequency Bands
ALFF and fALFF are calculated for each IC in three
frequency bands, i.e., <0.1 Hz, slow-5 (0.01–0.027 Hz), slow-4
(0.027–0.073 Hz). Actually, fALFF is the power in corresponding
band divided by the total power in the entire detectable
frequency range (<0.25 Hz). Given the fALFFs of slow-3 band
(0.073–0.198 Hz) and slow-2 (0.198–0.25 Hz) are very small and
unreliable, we have not analyzed them. The central frequency
and the width of the bands are defined according to the
formula given by Buzsáki and Draguhn (2004). Specifically, the
central frequencies of the bands follow a linear progression
on a natural logarithmic scale with a constant ratio between
neighboring frequencies, generating the separated frequency
bands. Two-sample t-test is performed to examine if there is
the significant difference between fALFF in NC and SPD groups
(p < 0.05). For multiple comparisons, the false discovery rate
(FDR) is controlled by the linear step-up procedure introduced
by Benjamini and Hochberg (1995).

RESULTS

Intrinsic Brain Network Constructed From
Combination of Independent Components
Spatial distributions of seven networks are given in Figure 2 for
NC and SPD groups. The details of how ICs combine to generate
networks, the spatial overlap ratio (rso) and Z-score Pearson
correlation coefficient (rz) between ICs in NC and SPD groups
are presented in Table 1. Several observations can be gained.
First, the spatial distributions of seven networks constructed
from combination of ICs are consistent with those generated
through the clustering analysis (Yeo et al., 2011). The quantitative
comparison of results from two approaches is not accessible
because one is volume-based and the other is surface-based.
Second, most patterns of networks are convergent between NC
and SPD groups. It origins from the fact that high rso and rz
between ICs in NC and SPD groups. For most ICs, rso ranges
from 0.6151 to 0.7726; for sensorimotor-b and limbic-b, rso,
not as high as other ICs, is only 0.4956 and 0.5638, partially
due to the small volume of these two ICs. Except limbic-b
and visual ICs, rz is larger than 0.5861. Smaller rz of visual
IC might be resulted from that one visual IC is generated for
NC group, however two ICs (left and right) are formed for
SPD group. Third, the combination of different number of ICs
or one single IC correspond to one large scale intrinsic brain
network, indicating the divergence of scales and constructing
approaches. The group ICA can generate fine-grained networks
as an alternative to clustering algorithm. Forth, seven large
scale intrinsic brain networks constructed from 14 ICs have
covered most cerebral cortex areas for both NC and SPD

TABLE 1 | The spatial overlap ratio (rso) and Z-score Pearson correlation
coefficient (rz) between independent components (ICs) in NC and SPD groups.

Name of IC Spatial overlap
ratio (z > 1.0; rso)

Z-score
Pearson correlation
coefficient (rz)

Default-a 0.6608 0.7372
Default-b 0.7656 0.9043
Default-c 0.6627 0.5861
Executive-a 0.7449 0.7570
Executive-b 0.7086 0.8479
Dorsal-Attention-a 0.6166 0.8503
Dorsal-Attention-b 0.7327 0.7236
Salience 0.6430 0.6758
Visual 0.7109 0.3517
Sensorimotor-a 0.6151 0.8395
Sensorimotor-b 0.4956 0.3369
Sensorimotor-c 0.7726 0.8160
Limbic-a 0.5638 0.7543
Limbic-b 0.7331 0.8367

groups. The generated atlas of each brain network can be used
for further studies of spatial z-score distribution of functional
connectivity, ReHo, and fALFF, functional network based on
average time-series, and structural brain network based on DWI
and tractography.

Power Spectral Density of Large Scale
Intrinsic Brain Networks
Power spectral density (PSD) of large scale intrinsic brain
networks has been given in Figures 3, 4 for NC and SPD
group, respectively. The shapes of PSD look similar across both
networks and groups though the extract amplitudes are different,
i.e., the value increases gradually from frequency near zero,
reaches a peak at about 0.02 Hz, and then decrease continuously
with the frequency. It is in agreement with study of Damoiseaux
et al. (2006). The peak of PSD decreases from the advanced
cognitive network to primary sensorimotor networks with the
maximum for the salience network. For limbic-b network, the
lowest peak makes the curve of PSD quite different with those
of the other networks. All the peaks are located in slow-5
band, which may partially explain the reason and necessity of
dividing the frequency band into slow-5 and slow-4. Though
the exact mechanism is unknown, the difference of PSD trend
observed here presents different neural manifestations of slow-4
and slow-5, in line with studies at regional, interregional and
network levels in time domain (Xue et al., 2014). The observation
on the default modal network is consistent with those byMingoia
et al. (2013). Boyacioglu et al. (2013) also reported the differences
of frequency spectra between advanced cognitive networks and
primary cortex networks.

fALFF in Multiple Frequency Bands
fALFF of three frequency bands for seven networks (14 ICs) and
their comparisons between NC and SPD groups have been given
in Figure 5. For the band of <0.1 Hz (Figure 5A), fALFF ranges
0.40–0.95 and 0.56–0.95 for NC and SPD groups, respectively.
The advanced cognitive networks show higher fALFF (>0.87 for
NC; >0.92 for SPD) than the primary sensorimotor networks
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FIGURE 2 | Seven large scale intrinsic brain networks constructed from spatial combination of 14 ICs for NC and SPD groups. (A) NC group. (B) SPD group.

and limbic networks for both groups. Thirteen of fourteen ICs
(except the salience network) presents higher mean of fALFF for
SPD group, five ICs have significant higher fALFF (p < 0.05) for
SPD group. However, no one IC passed the FDR correction.

In the band of slow-5 (Figure 5B), some common features
are found for the NC and SPD groups. First, the primary
sensory and motor networks own lower fALFF than advanced
cognitive networks (p < 0.05), which is in accordance with, but
more significant than, the result in the band <0.1 Hz. It can
be explained by the proposal that low frequency bands were
associated with the integration of large-scale neural networks
and long-distance connectivity, while high frequency bands
correspond to local neural activity and short connections
(Buzsáki and Draguhn, 2004). The cognitive networks belong to
the association networks defined by connectivity between widely
distributed regions, while sensorimotor networks are hallmarked
by dense local connectivity to nearby areas (Buckner et al., 2013).
Moreover, the salience network presents the highest fALFF in
both groups.

Comparison of fALFF between NC and SPD groups
demonstrates that all ICs in SPD have higher mean of fALFF
than that in NC in slow-5 band, 10 of 14 ICs present statistical
significance (p< 0.05, FDR corrected). It might suggest that there
is wide spread disruption of functional brain organization in
SPD, just as in early-onset Alzheimer’s disease (Adriaanse et al.,
2014). Specifically, the function of advanced cognitive networks
is overactive and the function of primary sensory networks is
inhabited or disrupted.

For the band of slow-4 shown in Figure 5C, opposite trend is
found. For SPD group, seven of eight ICs in advanced cognitive
networks (except IC of dorsal-attention-b) display lower mean
fALFF than that in NC, four presents statistic significant
(p < 0.05), but only Executive-b passes the FDR correction.
However, the mean of fALFF in sensorimotor network is still
higher for SPD group though no significance exists, and the
fALFF in SPD is significantly higher than that in NC. It might
suggest that fALFF in SPD will be lower than that in NC for
much higher frequency band (>0.073 Hz). Moreover, fALFF is

larger in slow-5 band than in slow-4 band in all studied networks.
It accords with previous observation of greater fALFF in slow-5
for the cortical areas but in slow-4 for the subcortical areas (Zuo
et al., 2010; Wang Z. et al., 2014).

ALFF in Multiple Frequency Bands
Figure 6 gives the results of ALFF. Comparing Figures 5, 6, one
can find that most results from ALFF and fALFF are consistent,
except three slight differences. As shown in Figure 6A, ALFF
in <0.1 Hz band has no significant difference between SPD
and NC groups for Dorsal-Attention-b, Sensorimotor-c and
Sensorimotor-b. For ALFF in slow-5 band (Figure 6B), Default-c
does not pass the FDR correction (p < 0.05). No significant
difference between SPD and NC is observed for ALFF of
Default-b in slow-4 band (Figure 6C). These observations are
supported by previous report that the measure of fALFF has
higher specificity for it suppresses the physiological noise, while
ALFF owns higher test-retest reliability (Zuo et al., 2010).

DISCUSSION

In the current study, we proposed a novel framework of
conducting multiple frequency bands analysis (MFBA) to
large scale intrinsic brain networks. Using this framework,
we identified the default, executive, salience, dorsal attention,
sensorimotor, visual and limbic networks in both NC and
SPD groups, and examined their similarities and differences
in spatial distributions, PSD, fALFF in three frequency
bands (<0.1 Hz, slow-5 and slow-4). Overall, the spatial
patterns and PSD distributions of networks are convergent
between NC and SPD groups. The PSD and fALFF are
different across networks, frequency bands and groups.
It is suggested that the proposed MFBA method is very
powerful to characterize the different networks and neurological
disorders. Neural activity in SPD has been disrupted globally,
indicated aberrant fALFF of various networks in different
frequency bands.
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FIGURE 3 | Power spectral density (PSD) of seven large scale intrinsic brain networks of NC group. There are seven large scale intrinsic brain networks spatially
constructed by 14 ICs, and the PSD of the TC of each IC is presented. The default network consists of three ICs named Default-a, Default-b and Default-c (the name
is just for convenience and does not indicate the order and meaning), the executive network includes two ICs (Executive-a and Executive-b), the dorsal attention
network (DAN) has two ICs (Dorsal-Attention-a and Dorsal-Attention-b), the sensorimotor network comprises three ICs (Sensorimotor-a, Sensorimotor-b,
Sensorimotor-c), the limbic network includes two ICs (Limbic-a and Limbic-b), both the salience and visual networks have one IC. The two vertical lines in each
sub-figure of the PSD vs. frequency indicate the locations of 0.027 Hz and 0.073 Hz. Therefore, the frequency bands of slow-5 (0.01–0.027 Hz) and slow-4
(0.027–0.073 Hz) are marked through these two lines.

The advanced cognitive networks display higher fALFF
than the primary sensorimotor networks in three frequency

bands. It might be explained by the connectivity hallmarks
of these two categories of networks. The advanced cognitive
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FIGURE 4 | PSD of seven large scale intrinsic brain networks of SPD group. As same as to the NC groups, 14 ICs spatially form seven large scale intrinsic brain
networks, and the PSD of the TC of each IC are given. The construction of each large scale intrinsic brain networks, the name and order of ICs are equal to those in
NC group. The frequency bands of slow-5 (0.01–0.027 Hz) and slow-4 (0.027–0.073 Hz) are marked by two vertical lines in each sub-figure of the PSD vs. frequency.

networks correspond to association networks which are
defined by long connectivity between widely distributed

areas, whereas the primary sensorimotor networks are
distinctively characterized as dense local connectivity to
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FIGURE 5 | Fractional amplitude of low frequency fluctuation (fALFF) of large scale intrinsic brain networks in multiple frequency bands. (A) The frequency band
of <0.1 Hz. (B) Slow-5 band. (C) Slow-4 band. One single asterisk indicates that there is a significant difference (p < 0.05) between SPD and NC groups, but it does
not pass the false discovery rate (FDR) correction. Two asterisks mean that there is an FDR-corrected significant difference.

nearby cortex (Power et al., 2011; Yeo et al., 2011; Buckner
et al., 2013; Glasser et al., 2016). Meanwhile, Buzsáki and
Draguhn (2004) suggested that lower frequency bands are
associated with the integration of large-scale neural networks,
while higher frequency bands correspond to local neural
activity.

We found greater fALFF in the slow-5 band than in the slow-4
for all investigated networks. This finding can still be explained
by the suggestion of Buzsáki and Draguhn (2004) given they are
located in cerebral cortex. It accords with previous observations,
and only subcortical regions contributing to local events present
great fALFF in slow-4 than in slow-5 (Yu et al., 2014).

Large Scale Intrinsic Brain Networks
It is worth noting that the combination of several components
into a network or assignment of one single component to

a specific network is based on visual inspection with the
reference of the coarse (7-network) parcellations by Yeo
et al. (2011). Therefore, neither may our estimated networks
exactly match with those in the previous literature, nor
the assigned name of network solely corresponds to its
functions.

For example, default network defined in current study is
composed of three ICs, and covers the medial prefrontal cortex
(PFC), the posterior cingulated/retrosplenial cortex, the inferior
parietal lobule (IPL) and the medial temporal lobes. However,
previous studies usually considered DMN to be separated into
anterior and posterior regions (Damoiseaux et al., 2006; Calhoun
et al., 2008; Zhang et al., 2014), though the main regions are
overlapped in previous and our studies. The heuristic reference
label of the salience network is adopted from Seeley et al.
(2007) and Buckner et al. (2013), it is referred as (or closely
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FIGURE 6 | Amplitude of low frequency fluctuation (ALFF) of large scale intrinsic brain networks in multiple frequency bands. (A) The frequency band of <0.1 Hz.
(B) Slow-5 band. (C) Slow-4 band. One single asterisk indicates that there is a significant difference (p < 0.05) between SPD and NC groups, but it does not pass
the FDR correction. Two asterisks mean that there is an FDR-corrected significant difference.

adjacent to) ventral attention network (Yeo et al., 2011) or
cingulo-opercular network (Dosenbach et al., 2007). It mainly
consists of anterior cingulate cortex (ACC) and dorsal anterior
insular cortex (dAIC; Seeley et al., 2007; Uddin, 2015). The
DAN includes dorsolateral PFC, FEFs, inferior precentral sulcus,
superior occipital gyrus, middle temporal motion complex, and
superior parietal lobule (Corbetta and Shulman, 2002; Fox
et al., 2005). The executive control network is also referred as
frontoparietal control network (Yeo et al., 2011), or control
network (Buckner et al., 2013), consisting of lateral PFC,
precuneus, the anterior extent of IPL, medial superior cortex
and the anterior insula (Vincent et al., 2008; Spreng et al.,
2010). Actually in previous studies, the frontoparietal control
network also includes anterior insula which is one part of

salience network. In the work by Seeley et al. (2007), it includes
dorsolateral PFC (DLPFC), lateral parietal cortex, dorsomedial
frontal/pre-SMA and ventrolateral PFC. To be consistent with
the results by Yeo et al. (2011), we combined three distinct
ICs into the sensorimotor network. Actually, it covers the
regions for the motor, somatosensory and auditory functions,
and the component-c corresponds to the auditory regions.
Limbic networks are not well defined in the present work. After
assigning several large ICs into above six networks, we put
the remaining comparatively large ICs into the so-called limbic
networks.

It is important to know the functions of DMN, CEN, DAN,
salience network and limbic system because it helps interpret the
disrupted brain functions in SPD from the altered fALFF/ALFF
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in multiple frequency bands (see ‘‘Methodology Advantage and
Significance’’ section). DMN is associated with self-oriented and
social cognition (Buckner et al., 2008; Sridharan et al., 2008;
Andrews-Hanna et al., 2014). The executive control network
is to operate on identified salience (Seeley et al., 2007), and is
involved in the maintenance and manipulation of information,
as well as decision making. The salience network takes central
role in the detection of behaviorally relevant stimuli and the
coordination of neural resources from DMN (internally directed
action) and CEN (externally directed action; Uddin, 2015). DAN
subserves externally directed cognition (Spreng et al., 2013).
Limbic system is involved in motivation, emotion, learning and
memory.

Methodology Advantage and Significance
In the proposed MFBA framework, the large scale intrinsic
brain networks are constructed from spatially ICs resulted from
group ICA at first. Second, the TC of each IC is transformed
into frequency domain to characterize its PSD. Third, the
fractional amplitude of LFO (i.e., fALFF) in multiple frequency
bands (<0.1 Hz, slow-5, and slow-4) can be determined. We
used Welch method to estimate PSD, which is more robust
than peroidogram methods employed in previous study (Zuo
et al., 2010). Other methods such as wavelet-based method and
Chronux spectral analysis are also possible (van Vugt et al., 2007;
Duff et al., 2008).

Only one ALFF measure is not enough to sensitively
distinguish the alteration of low and high frequency bands,
which correspond to different oscillators and connectivity (short
or long, local or global, for segregation or for integration).
Alternations of ALFF based spontaneous BOLD signal are
frequency dependent or specified (Zuo et al., 2010; Wang Z.
et al., 2014; Yu et al., 2014). MFBA is more sensitive than
ALFF analysis. For example, the schizophrenia group exhibited
significantly higher spectral power than controls at a frequency
bin 0.0797 Hz and 0.0858 Hz (Mingoia et al., 2013). Similar
to ALFF, functional connectivity and its alternations are also
frequency-specific (Salvador et al., 2008; Xue et al., 2014).

Actually, we do MFBA for TC resulted from the group
ICA, not for TC of each voxel. The advantage lies in the
ability of reducing the dimensionality of data, facilitating
comparisons, enhancing SNR and so on, similar to brain
parcellation based analysis (Glasser et al., 2016). Time series
after pre-processing of each voxel were input into PSD toolbox
to calculate amplitude of LFOs and fALFF. The resulting ALFF
and fALFF were converted into Z-scores and the corresponding
z-score map within gray matter mask is generated to further
group-level analysis. The voxel-wise analysis of time is local
and sensitive to motion (head, inspiration, etc.), the influence
of large vessels. After volume and artificial analysis based
on (LF to HF power ratio) vs. (Dynamic range) (Smith
et al., 2013) and visual inspection with known references,
ALFF and fALFF of TCs can avoid mentioned disturbances
to voxel-wise analysis. Using ICs to construct large-scale
intrinsic brain networks owns apparent advantages. ICs is
data-driven approach to obtain potential functional networks
with spatially distributed brain regions. To combine various

ICs into advanced cognitive networks is helpful to build up
hierarchical brain networks. It also helps understand architecture
of cognitive networks, their components (or sub-network) and
functions.

As per our previous study (Zhang et al., 2014), we performed
the group ICA in the segregate two groups. This method
originates from the hypothesis that the health controls and SPD
patients are two different groups, their combination will increase
the heterogeneity of data, and the group ICA results from this
combined group might not characterize the spatial and temporal
features of SPD. To evaluate the matching degree between the
same IC from two groups, the spatial overlap ratio (rso) and
Z-score Pearson correlation coefficient (rz) are analyzed (as
shown in Table 1). It is shown that most patterns of networks
are convergent between NC and SPD groups (high rso and rz).
However, the ICs from two groups are not completely overlapped
spatially, which might be related to the disturbance of BOLD
signal of SPD. The spatial difference of the same IC does not
influence their comparison of measures in temporal or frequency
domain (i.e., fALFF). In the study by Anderson and Cohen
(2013), the individualized ICA had been implemented, based
upon the hypothesis that the different networks operate between
schizophrenia patients and health controls. In summary, there is
no consensus regarding the way of ICA, in the segregate groups
or combined group.

Wu used the template by Yeo et al. (2011) generated from the
resting state fMRI data (or the intrinsic functional connectivity)
of 1000 subjects by a clustering approach. This template is
surface-based, which is thought to more accurate than the
volume-based templates in registration (Qi et al., 2015). The ICA
template generated from rs-fMRI data of 603 healthy subjects
(Allen et al., 2011) and another available template from FIND
laboratory (Shirer et al., 2012) containing 90 ROIs across the
14 Independent Component Networks (ICNs) can also be used
in future.

Recently, the low frequency steady-state brain response has
been studied by the MFBA (Wang Y. et al., 2014; Wang et al.,
2015, 2018; Wang Y. et al., 2016). It is demonstrated that the
cognitive activities can change the power at different frequencies.
In our study, we use the MFBA to reveal alternations of fALFF in
different networks in SPD patients in a ‘‘resting’’ state. Compared
with the case of cognitive activity, the ‘‘resting’’ state can be
considered as a baseline.

To the best of our knowledge, multi-band fALFF of large-scale
intrinsic brain networks constructed through group ICA has not
been studied, for both the healthy control and SPD.

Disruptive Large Scale Intrinsic Networks
in SPD
Our new finding on SPD is that higher fALFF in the frequency
bands of <0.1 Hz in SPD group for most networks compared
with NC group, and this trend becomes more pronounced in
slow-5 band. This finding indicates there is a global disruption
in the organization of SPD brain networks, similar to the
observation that all three networks (SN, DMN, CAN) of patients
with schizophrenia show structural and functional deficits
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(Palaniyappan et al., 2011). It can be explained by the interaction
of networks which result in the spreading from the primary
deficit (Menon, 2011). In line with our results, Yu et al. (2014)
also reported altered fALFF in widespread brain areas. However,
which network or brain region is the primary deficit is unknown
and worthy of further study. Causality analysis of connectivity
between these networks might be a promising avenue (Friston,
2009) as what have been done in schizophrenia (Palaniyappan
et al., 2013).

Higher fALFF is the manifestation of abnormal spontaneous
neural activity. In different networks, it may show distinct
representations and give rise to different symptoms for SPD.
Higher fALFF in DMN means there might be a DMN
suppression deficit in SPD. Lack of DMN suppression has
been reported in a growing body of work in schizophrenia
patients and their first-degree relatives (Pomarol-Clotet et al.,
2008; Whitfield-Gabrieli et al., 2009; Gerretsen et al., 2014).
Given the idea that DMN suppression functionally correlates
to goal-directed cognition (Menon, 2011; Anticevic et al.,
2012), lack of suppression will result in bad performance in
cognitively demanding task, explaining the symptom of cognitive
impairment associated with SPD. Moreover, aberrant neural
activity in DMN in SPD might lead to deviant functional
connectivity, and then positive symptoms like hallucination and
delusions as observed in schizophrenia patients (Rotarskajagiela
et al., 2010; Woodward et al., 2011).

In CEN andDAN, higher fALFF in slow-5 and lower fALFF in
slow-4 for SPD suggest that local connectivity in these networks
corresponding to fALFF in slow-4 is impaired or certain region is
broken. In other words, functional segregation in these networks
is reduced, whereas the functional integration is enhanced.
Though this hypothesis needs the more direct evidences from
graph theory analysis on intrinsic connectivity network (in
preparation), the decreased network connectivity and efficiency
of CEN networks have also been reported in schizophrenia
(Bassett et al., 2008). Considering the function of CEN, the
current finding appears to be associated with the SPD symptoms
of the working memory deficits and disorganization, similar to
the finding in schizophrenia (Menon, 2011; Woodward et al.,
2011). The abnormal fALFF in CEN might be associated with
deficits of attention in SPD (Luck and Gold, 2008).

For the salience network, no significant difference of fALFF
is observed in band of <0.1 Hz and slow-4 band. However, we
observed the functional connectivity between salience network
and three DMN components, one CEN component, and one
dorsal attention component significantly decreases in SPD (in
preparation). It is in agreement with the observations that the
causal influence from the salience network (right AIC) on the
DMN and CEN in schizophrenia turns weak (Palaniyappan
et al., 2013; Manoliu et al., 2014). A growing body of literature
has indicated that the structural and functional abnormality
of salience network is a key neuropathological component
in schizophrenia. The increased fALFF in frontal regions is
because these regions are dysregulated in the context of working
memory task performance. Dysregulation of medial frontal
regions is associated with self-directed thoughts, with the
consequence that the source of internal and external stimuli

could become confused, whichmay provide a neurophysiological
basis for hallucinations (Palaniyappan et al., 2013; Manoliu et al.,
2014).

In primary cortex, the visual, sensorimotor and auditory
networks present higher fALFF in slow-5 band for SPD group.
In slow-4 band, the statistical significance does not exist for three
sensorimotor networks, even the visual network in SPD group
displays lower mean fALFF. Given the primary networks are
characterized as the local connectivity and specialized function,
fALFF in high frequency band was to be dominated. The
reduced fALFF in high frequency might partially explain the
disruptions of these networks. Compatible with the present
finding, the reduced activation in visual networks in SPD has
been observed in several previous studies (Camchong et al., 2008;
Aichert et al., 2012; Meyhöfer et al., 2015), and lower activation
in sensorimotor networks has been reported (Hong et al., 2005;
Keedy et al., 2006).

In limbic system, the increased fALFF in low frequency band
(slow-5 and slow-4) becomes more significant, corresponding to
the reduced fALFF (>0.1 Hz) in high frequency. Since limbic
system includes some subcortical structures of the hippocampus,
anterior groups of thalamic nuclei, hypothalamus, mammillary
body, it is supposed to be oscillation of high frequency (Salvador
et al., 2008; Zuo et al., 2010). Deficits in limbic system
characterized as reduced fALFF in high frequency might be
implicated in symptoms of SPD. For example, dysfunction in the
frontal-striatal-thalamic circuitry, the neural circuitry involved in
rewarding has been reported in SPD (Hazlett et al., 2008; Hur
et al., 2016) and schizophrenia (Hoptman et al., 2010). Deficits in
reward processing and/or stimulus saliency, dulling of emotional
expression might relate to the alternation in the right striated
region. Moreover, the volume of subcortical structures seems to
be reduced in SPD, hippocampus is the key node of pathology
(Fervaha and Remington, 2013).

The signal from lower frequency bands is associated with
the integration of large-scale neural networks and long-distance
connectivity, which may be primarily mediated by cortical
regions, especially the brain’ hub nodes, such as the mPFC and
IPL. Conversely, higher frequency signals have been linked with
more local neural activity and short connections, which maybe
largely constituted by the more primitive subcortical regions.
That phenomenon may provide an explanation for our findings
of greater LFO amplitudes in the cortical areas in slow-5 band
but greater amplitudes in the subcortical areas in relatively higher
slow-4 band (Wang Z. et al., 2014).

Limitations and Future Works
While determining spatial locations of each IC, one threshold
of Z > 0.5 is employed to the Z-map of IC, indicating that the
voxels with Z < 0.5 will be set zero and excluded from the IC.
This threshold is roughly decided according to the tradeoff that
overlapped regions between different ICs are minimized and the
sum of ICs occupymost gray matter volume. It is unknown if this
threshold is applicable to other studies. To increase this threshold
will make rso and rz increase.

According to the theoretical scale-free model, the peak of
curve between the power and frequency should be located in
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the lower frequency bands. Our results and previous studies
(Mingoia et al., 2013) showed the peak is located in slow-5 band
for the data is not long enough (only 170 points). This issue can
be addressed in the future study through extending the rs-fMRI
scanning time.

The TC of intrinsic brain network is more robust than that
of single voxel or regions to various noises (Zuo et al., 2010). TC
of each individual’s IC will suppress high-frequency components
for the neural activity of the short-range connections. However,
if one region has a good homogeneity of neural activity, the
suppression to high-frequency components will be limited. That
is the reasonwhy the group ICA is performance twice (for healthy
control and SPD patients). The final goal is to extract the IC with
homogeneous neural activity.

Intrinsic functional connectivity provides a powerful and
unique tool to provide insight into human brain organization.
However, fcMRI is based on an inherently ambiguous measure
that reflects constraints both from static anatomical connectivity
and from poorly understood functional coupling changes that
are dynamic. For this reason, fcMRI is best used to a tool for
generating hypothesis about brain organization that will require
further study with external methods (Buckner et al., 2013).

Actually, the generated volume-based atlas or parcellations
of each brain network is consistent with previous studies (Allen
et al., 2011; Yeo et al., 2011; Shirer et al., 2012) by visual
inspection. We are confident of using this atlas in the current
SPD data to study the ReHo and fALFF of these large-scale
intrinsic brain networks, to construct the functional whole brain
network using time-series of independent components, and to
build up the structural brain network using DWI data (we had
scanned) and tractography algorithms.

The neural mechanism of several frequency bands such
as Alpha, Beta, Theta and Gamma might be known (Buzsáki
et al., 2013). For example, the Theta oscillations (4–10 Hz)
are supported by intracellular and circuit characteristics
of the septo-hippocampal-entorhinal system. The LFOs
(0.01–0.1 Hz) reflect the periodic modulation of gross
cortical excitability and the long-distance synchronization
of neurons. However, the neural mechanism of slow-5 and
slow-4 is not clear, though we know the principle that
low frequency bands are associated with the integration of

large-scale networks and high frequency bands correspond
to local neural activity (Buzsáki and Draguhn, 2004). To use
the steady-state BOLD responses to modulate low frequency
neural oscillations and perform MFBA might help clarify
the neural mechanism in the future study (Wang Y. et al.,
2014).

CONCLUSION

The present work has demonstrated that the proposed MFBA
method can characterize the large scale intrinsic brain networks
through calculating the PSD and ALFF/fALFF of TC resulted
from group ICA of rs-fMRI data. The PSD and ALFF/fALFF are
different across networks, frequency bands and subject groups
(NC or SPD). Intrinsic brain networks with different connectivity
(short or long) and functions (segregation or integration)
might correspond to oscillators with different frequencies and
therefore present different characteristics in each frequency
band. The proposed MFBA methods are proved to enable
revealing the frequency-dependent alternation of ALFF/fALFF
for seven networks in SPD, which may help interpret the
neuropathology disruptions in SPD and correlate them with
behavioral symptoms.
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