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Thewidespread application of electric vehicles (EVs) is a positive force driving green
development. However, their widespread penetration also poses significant
challenges and threats to the security and stable operation of the power grid. To
address this urgent issue, this article constructs a bi-level optimal dispatchingmodel
fostering collaboration between electric vehicle aggregators and the distribution
network. The upper-level optimization targets the minimization of peak-valley
differences in the distribution network via considerably arranging power outputs
of gas turbines, while the lower-level one focuses on reducing the charging expense
of EV aggregators via efficient charging transfer. Note that the charging expense is
not only composed of electric cost but also a dynamic carbon emission factor-
based cost, which contributes to the electricity economy and carbon reduction
concurrently. A geometric mean optimizer (GMO) is introduced to solve the mode.
Its efficiency is evaluated against three typical algorithms, i.e., genetic algorithm,
great-wall construction algorithm, and optimization algorithm based on an
extended IEEE 33-bus system with different charging behaviors of EVs on both a
typical weekday and weekend. Simulation results demonstrate that the GMO
outperforms other competitive algorithms in accuracy and stability. The peak-
valley difference between the distribution network and the total cost of EV
aggregators can be decreased by over 98% and 76%, respectively.
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1 Introduction

With the increasingly prominent issue of climate change, reducing carbon emissions has
become the common goal of the international community (Hu and Man, 2023). The power
industry is widely regarded as one of the key areas to reducing carbon footprint because of its
important position in global carbon emissions (Xu et al., 2020a). Meanwhile, the rapid
popularization of electric vehicles (EVs) is considered to be a powerful means to reduce road
traffic carbon emissions and improve urban air quality (Tan et al., 2023). However, large-
scale electric vehicles connected to the power grid for disorderly charging will bring
problems such as the increase in power loss (Manzolli et al., 2022), the decline of power
quality, and the difficulty of optimal control of power grid operation (Xu et al., 2020b).

To address these tricky problems, extensive studies have been undertaken regarding
vehicle-to-grid (V2G) in the past few years, which can be classified into two aspects,
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i.e., economic optimization (Ahmadpour et al., 2022) and safety
enhancement (Sperstad et al., 2020). For instance, reference (Gan
et al., 2020) proposed a probabilistic evaluation method to investigate
household EVs’ dispatching potential when considering users’
multiple h2h travel needs, which gave a significant foundation for
EVs to participate in power grid regulation. Literature (Chen et al.,
2017) constructed an EV aggregationmodel to participate in auxiliary
services to achieve effective scheduling management and improve the
economy of the system. Literature (Long et al., 2021) presented an
ordinal optimization-based real-time scheduling method for large-
scale EV charging stations, which reduced 6% of operation cost. In
reference (Liu et al., 2019), a two-stage economic charging framework
for EV aggregators was developed. Reference (Manzolli et al., 2022)
developed a charging schedule optimization model of battery electric
buses considering the aging of the batteries, which pointed out that the
charging cost is expected to reduce by 38% in 2030. Besides, extensive
studies focused on the time-of-use (ToU) electricity pricemechanism-
guided charging schedule (Manzolli et al., 2022; Yan et al., 2021).
References (Mathioudaki et al., 2021; Ghosh and Aggarwal, 2018)
designed a price-based service menu for EV charging to maximize
profits. A deep reinforcement learning based approach was
constructed to address optimal charging scheduling under
uncertain electric prices (Wan et al., 2019). Li Z. et al. (2023)
established a price-based transfer model to avoid charging congestion.

Nevertheless, the above-mentioned studies mainly concentrated
on economic scheduling, which unfortunately ignored the effects of
carbon emission. Recently, calls have come for carbon assessment to
reflect the nature of the grid generation mix via dynamic approaches
(Khan et al., 2018). The research on the carbon reduction of electric
vehicle cooperative power grid dispatch has gradually emerged (Wu
et al., 2023). Daneshzand et al. (2023) developed a scheduling
framework for EVs and assessed the power grid carbon emissions
under various tariff designs and multiple vehicle adoption levels. In
Wang et al. (2023), the park EV agent participates in the carbon
market by selling carbon emission allowances to increase profits. In
Zhang G. et al. (2023), source-load coordinated carbon reduction
based bi-layer economic scheduling models were established when
EVs were considered as controllable loads and mobile energy
storage. However, these current studies only calculated the total
carbon emission on the source side. The real-time carbon emission
on the load side was ignored, which resulted in an unideal emission
reduction on EVs.

In this context, this paper proposes a dynamic carbon emission-
factor-based bi-level optimal dispatching of the distribution network
considering friendly interaction with electric vehicles. Its main
contributions are summarized as follows:

➢A bi-level friendly interactionmodel between the EV aggregator
and distribution network is established, upon which the upper-
level optimization attempts to reduce the peak-valley difference
of the distribution network and the lower-level one aims to
minimize the operation cost of the EV aggregator;

➢ Dynamic carbon emission-factor-based emission cost is
combined with electric cost to guide the charging behaviors
of EV aggregator effectively, thus reducing combined charging
cost;

➢A novel meta-heuristic algorithm, namely, geometric mean
optimizer (GMO) (Rezaei et al., 2023), is induced to solve the

upper-level model, while three typical competitive algorithms
are used to validate the outperformance of GMO under an
extended IEEE 33-bus system, i.e., genetic algorithm (GA),
great-wall construction algorithm (GWCA), optimization
algorithm (WOA).

The rest of this paper is organized as follows: Section 2 models
the distribution network; Bi-level optimization framework is
introduced in Section 3; Two case studies are executed in Section
4; Section 5 summarizes this paper.

2 Modeling of distribution network

A common distribution network with different distributed
power sources and loads can be depicted in Figure 1, which
includes power flow and carbon emission flow.

2.1 Charging model of electric vehicle

When the EV aggregator optimizes the scheduling of the single
electric vehicle in the area, its charging time characteristics
determine whether the single electric vehicle can participate in
the scheduling task in this period of time. For electric vehicles in
a charging station, the charging time characteristics mainly include
plug-in time Tn

in (h), plug-out time Tn
out (h) and schedulable time Tn

s

(h), which can be described as Eq. (1)

Tn
s � Tn

out − Tn
in (1)

where n represents the nth EV.
Besides, the charging demand of each EV is determined by

Eq. (2)

En
d � En

max ·(SoCn
ecp − SoCn

in) (2)

where En
d (kWh) means the charging demand of the nth EV; En

max

(kWh) is the capacity of the nth EV. SoCn
ecp and SoCn

in stand for the
excepted and initial SoC of the nth EV, respectively. Assuming that the
charging demand of every EV can bemet, the SoCn

ecp can be calculated by
Eq. (3)

SoCn
ecp � SoCn

in +∑T

t�1
Pn
c t( )·Δt
En
max

(3)

where Pn
c (kW) and En

max (kWh) are individually defined as charging
power and battery capacity of the nth EV; t, Δt (h), and T denote the
current period, scheduling interval, and the maximum number of
intervals, respectively. The maximum number of interval T is
determined by Eq. (4)

T � Tn
s

Δt
(4)

2.2 Dynamic carbon emission factor

According to the proportional sharing principle, the electric
carbon factor of the node is carbon emission per unit of electricity of
the power flow out of it, which yields Eq. (5)
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δi �
Pi
G × δiG +∑j∈Ωi

Pji × δj

Pi
L +∑j∈Ωi

Pij
(5)

where δi (kgCO2/kWh), δj (kgCO2/kWh) and δiG (kgCO2/kWh)
represent the ECFs of the ith node, the jth node, and the generator
connected with the ith node, respectively; Pij (kW) is the active
power flow from the ith node to the jth one; Pi

L (kW) denotes the
load power of the ith node (Zhang XS. et al., 2023).

3 Bi-level optimization framework of
distribution network

3.1 Upper-level optimization

Upper-level optimization aims to reduce the regulation burden
of grid operators. Thus its objective function is designed to minimize
the difference of peak-valley power in slack bus, which can be
expressed by Eq. (6), as follows:

minfup x( ) � var PSlack x( )( ) (6)
where PSlack represents injected active power of slack bus; x stands
for decision-making variables, which can be set as the controllable
elements in the distribution network.

The constraints of upper-level optimization composed of power
balance, the voltage of nodes, the power output of generators, and
the capacity of transformation lines, which can be mathematized as
Eq. (7)

PGi − PDi − Vi∑j∈Ni
Vj gij cos θij + bij sin θij( )� 0

QGi − QDi − Vi∑j∈Ni
Vj gij sin θij + bij cos θij( )� 0

PGi
min ≤PGi ≤PGi

max, i ∈NG

QGi
min ≤QGi ≤QGi

max, i ∈NG

Vi
min ≤Vi ≤Vi

max, i ∈NB

Si| |≤ Simax, i ∈NL

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(7)

where PGi (kW) and QGi (kVar) stand for the active power and
reactive power of the generator connected with the ith node,
respectively; PD (kW) and QD (kVar) are individually active and
reactive power demands; PG

min (kW) and PG
max (kW) are upper and

lower bounds of the active power of the generator, respectively;QG
min

(kVar) and QG
max (kVar) are upper and lower bounds of the reactive

power of the generator, individually; Vi
min (kV) and Vi

max (kV)
represent the lower limitation and upper limitation of the voltage of
the ith node, respectively; Si (kVA) and Simax (kVA) are respectively
defined as the current value and maximum value of capacity of the
ith line; NG, NB, and NL denote the number of generators, PQ
nodes, and branches, respectively.

3.2 Lower-level optimization

Unlike upper-level optimization, the lower one attempts to
protect the interests of the EV aggregator by optimizing EVs’
charging strategies. Thus its objective is the cost minimization of
the EV aggregator, expressed by Eq. (8)

minflower xEV( ) � Ccharge xEV( ) + Cems xEV( ) (8)
where Ccharge ($) represents electricity charging cost; Cems ($)
denotes carbon emission cost, which can be measured by Eq. (9)

Cems � ρems ·∑T

t�1δEV t( ) · Pcharge
EV t( )·Δt (9)

where ρems ($/kgCO2) means the unit price of carbon emission;
δEV(t) (kgCO2/kWh) is the carbon emission factor of the node
connecting EV aggregators at time t; Pcharge

EV (kW) represents the
charging power of the EV aggregator, which is determined by
Eq. (10)

Pcharge
EV t( ) � ∑Ncl

cl
∑N cl( )

n
Pn
c t( ) (10)

where cl andNcl denote the clth EV cluster and the total number of
EV clusters, respectively;N(cl) is the total number of EVs in the clth
cluster.

Additionally, the electricity charging cost Ccharge ($) of EV
aggregators is given by Eq. (11)

Ccharge � ρcharge ·∑T

t�1P
charge
EV t( ) · Δt (11)

where ρcharge ($/kWh) stands for the unit cost of charging.

FIGURE 1
A common distribution network with power and carbon emission flows.
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The solution of the lower-level optimization consists of charging
strategies of different EV aggregators, which yields Eqs (12), (13)

xEV � x1EV,/, xclEV,/, xNcl
EV[ ] (12)

xnEVEV � xcl
EV 1( ), xcl

EV 2( ),/, xcl
EV T( )[ ] (13)

where xclEV denotes the charging and discharging strategy clth EV
cluster.

To ensure the charging demand of each EV, lower-level
scheduling satisfies the following power balance constraint:

sum xclEV( ) � Pcl∑ (14)

In Eq. (14), Pcl∑ (kW) represents the total charging power of the clth
EV cluster.

3.3 Design of GMO-based bi-level optimal
scheduling

3.3.1 Principle of basic GMO
GMO is a meta-heuristic algorithm that uses the behavior of

multiple search agents in social interaction to search for the best
results, and its optimization performance has been effectively
verified in various test problems (Rezaei et al., 2023).

In GMO, the position Xi and velocity Vi of the ith agent are
defined as Eqs (15), (16)

Xi � xi1, . . . ,xid, . . . ,xiD( ) (15)
Vi � vi1, . . . , vid, . . . , viD( ) (16)

where xid and vid stand for the dth dimension variables of the
position and velocity, respectively; D is the maximum dimension of
the problem to be solved.

Unlike traditional mate-heuristic algorithms, GMO adopts a
dual-fitness index (DFI) to evaluate current solutions, which can be
calculated by Eq. (17)

DFIki � ∏NP

j�1
j ≠ i

MFk
j (17)

whereDFIki represents theDFI value of the ith agent at the kth iteration;
NP denotes the population size; MFk

j means membership function
value of the jth personal agent, which can be measured by Eq. (18)

MFk
j �

1

1 + exp − 4
σt


co

√ Fk
best,j − μk( )[ ] ,j� 1, 2, . . . , NP (18)

where Fk
best,j stands for the fitness value of the jth personal best agent

at the kth iteration; σ and μ are the standard deviation and mean of
fitness values of all personal best-so-far agents, respectively; co
represents the Napier’s constant.

A weighted average of all opposite personal best-so-far agents is
designed to make full use of the advantages of these best agents, as
follows:

Yk
i �

∑NP
j�1 DFIkj ·Xbest

j

∑NP
j�1 DFIkj

(19)

In Eq. (19), Yk
i denotes the global guide vector for the agent i;X

best
j is

the personal best position of the jth search agent; ε is a small constant

to void singularity. Besides, a Gaussian mutation mechanism of
global guide vector is introduced to preserve the diversity of the
guide agents, which yields Eq. (20)

Yk
i,mu � Yk

i + w · RV · Std k
max − Stdk( ) (20)

where Yt
i,mu is the mutated global guide vector; RV is a random

vector generated from the standard normal distribution; Std t
max and

Stdt stand for a vector composed of the maximum standard
deviation values of the personal best agents’ dimensions and the
standard deviation vector, respectively; w is an adaptive parameter,
which is determined by Eq. (21)

w � 1− k

K max
(21)

The updating equations of position and velocity are defined as
Eqs (22), (23)

Vk+1
i � w · Vk

i + φ · Y( k
i,mu −Xk

i ) (22)
Xk+1

i � Xk
i + Vk

i (23)
where φ represents a scaling parameter vector to delineate the steps
between the agent i and its guide, which can be formulated by
Eq. (24)

φ � 1+ 2 · R−1( )·w (24)
where R is a random parameter distributed in [0,1].

The specific process of GMO solving optimization problems can
be referred to (Rezaei et al., 2023).

3.3.2 Execution framework of GMO-based bi-level
optimal scheduling

Above all, the execution framework of GMO-based bi-level
optimal scheduling is illustrated in Figure 2. GMO is utilized to
find the most considerable power outputs of controllable resources
(CS) in the distribution network. The interior point method (IPM) is
applied to solve the lower-level model for the best charging strategies.
Peak-valley difference of the slack bus and DECFs of EV access points
obtained by power flow calculation are the interactive information
optimized for upper and lower levels, respectively.

4 Case studies

In this section, an extended IEEE 33-bus system is introduced to
verify the validation of the proposed method, as depicted in Figure 3,
whichmainly attaches two same gas turbines (GTs), awind turbine (WT),
a PV unit, and three types of EV clusters on the basis of the standard
system. The slack bus is connected to a main grid to ensure the power
balance of the distribution network. Its time-of-use (ToU) electricity prices
and DCEF are employed to guide economic low-carbon operations,
illustrated in Figure 4A. The price of carbon emission is 0.0068 $/kg.

In addition, the power outputs of two GTs and the charging
strategies of EV aggregators are set as decision-making variables for
upper-level and lower-level optimizations. The upper and lower
bounds of power outputs of GTs are set as 1,240 and 0 kW, and their
unit generation cost is both 0.0822 $/kWh (Cao et al., 2022). For EV
aggregators, charging behaviors of EV users on a weekday and
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weekends are taken into account. The initial state of charge (SoC) of
EVs can be characterized by a normal distribution from 20% to 50%
(Li YP. et al., 2023), as shown in Figure 4B. Their other critical
parameters are offered in Table 1. Note that the dwell time of EVs
are individually increased by an hour at night and decreased by two
hours by day on weekend against weekday (Zheng et al., 2023). The
scheduling time and interval are 24 and 1 h, respectively.

GMO and three competitive algorithms, i.e., GA (Wang et al.,
2022), GWCA (Guan et al., 2023), and WOA (Mirjalili and Lewis,
2016), are adopted to solve the bi-level optimization model. For fair
and objective comparisons, the population size and iteration
number of each algorithm are identically set to 30 and 100,
respectively. Results obtained by different approaches in
10 independent runs are recorded, upon which the best result of

each method is selected and compared. Additionally, the main
parameters of competitive algorithms are tabularized in Table 2.

4.1 Interactive scheduling test on a weekday

Here, an interactive scheduling test on a weekday is executed to
evaluate the performance of various algorithms. Figure 5A depicts
the convergence curve of upper-level optimization obtained by
various algorithms, which indicates GMO outperform others.
Specifically, while GA enjoys the fastest convergence speed, its
final fitness value is the largest, which means it traps in the local
optimum. After around 30 additional iterations, GMO searches for
the smallest fitness value, which validates the high accuracy of GMO.

FIGURE 2
The flowchart of GMO-based bi-level optimal scheduling.

FIGURE 3
Extended IEEE 33-bus system.
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Furthermore, a boxplot comparison based on 20 independent runs
of different algorithms is given in Figure 5B. One can observe the
boxplot of GMO exhibits the smallest distribution, upper bound,
and lower bound, which demonstrates GMO also wins other
competitive algorithms in stability performance.

Table 3 statistics the optimum results and mean computation
time of various algorithms, including the fitness value of upper-
level optimization, electricity cost, carbon emission cost, and total
cost of lower-level optimization, upon which the best indicator is
highlighted in bold. WO means without optimization: the power
outputs of two GTs only depend on ToU price and each EV is

charged via average power. When the generation cost of GTs is
lower than the ToU price, its power output is set to the rated value,
otherwise, it is equal to zero. GMO obtains the best indicators in
the upper-level optimization task. Its fitness value is only 6.018 ×
10–4 times that obtained by WO, which indicates GMO
significantly helps minimize power fluctuation of the
distribution network. Under lower-level optimization, various
algorithms acquire slightly different results. Based on
satisfactory optimization results of GMO, the total cost of the
EV aggregator is decreased by 76.18% (from 108.9666 $ to 25.9558
$) a day.

Figure 6 provides the optimal solutions on a weekday. The
power outputs of GTs are obviously decreased from 5:00 to 16:
00 and increased at night to minimize the peak-valley difference
of the distribution network, as shown in Figure 6A. As illustrated
in Figure 6B, the charging power of EVs is significantly
transferred from 18:00–24:00 and 0:00–2:00 to 3:00–5:00,
which is mainly because the electric price is the lowest at 3:
00–5:00.

Figure 7A gives the cost comparison of various algorithms on a
weekday. Figure 7B illustrates the CEFs of each EV cluster obtained
by WO and GMO, in which the CEF of EV cluster #2 is significantly
reduced from 7:00 to 17:00 after optimization via GMO. The CEF of
EV cluster #3 is always equal to zero because it is only charged
by WT.

FIGURE 4
Initial conditions of IEEE 33-bus system: (A) ToU price and DCEF of the slack bus; and (B) initial SoC of EVs.

TABLE 1 Main parameters of different clusters of EVs (Cao et al., 2022; Li YP. et al., 2023).

Typical days EVs Emax (kWh) Pmax (kW) Initial SoC (%) Plug-in (h) Plug-out (h) Number of EVs

Weekday Cluster #1 24 3.52 U(20,50) 20:00 7:00 50

Cluster #2 36 7.04 U(20,50) 8:00 17:00 40

Cluster #3 48 10 U(20,50) 19:00 7:00 10

Weekend Cluster #1 24 3.52 U(20,50) 21:00 9:00 50

Cluster #2 36 7.04 U(20,50) 9:00 16:00 40

Cluster #3 48 10 U(20,50) 20:00 9:00 10

TABLE 2 Main parameters of different competitive algorithms.

Algorithms Parameters Definition Value

GA Pc Crossover probability 0.95

Pm Mutation probability 0.001

GWCA PGWCA Gamma parameter 9

TGWCA The thrust generated by the tool 6

mGWCA The mass of the rock 3

WOA aWOA Coefficient [0,2]

bWOA Constant 1
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4.2 Interactive scheduling test on weekend

In addition, the interactive scheduling test on weekends is
designed to further validate the feasibility of the proposed
method. Similar to the upper optimization on a weekday, GMO
acquires the smallest fitness value with the most powerful stability
compared with other algorithms, as shown in Figure 8.

Statistic results of various algorithms on weekends are tabulated
in Table 4. The lowest total cost and carbon emission cost are
simultaneously acquired by GMO. There are only slight differences
between the smallest fitness value and shortest mean computation
time and those obtained by GMO. In particular, the fitness value of
upper-level optimization and total cost of the EV aggregator is
decreased by 99.82% and 77.27%, respectively.

FIGURE 5
Comparisons of various algorithms for upper-level optimization on a weekday: (A) Convergence curve; and (B) Boxplot.

TABLE 3 Statistic results of various algorithms on a weekday.

Algorithms Fitness vaule Electricity cost ($) Carbon emission cost/$ Total cost ($) Mean computation time (s)

WO 2.6585 104.8578 4.1088 108.9666 —

GA 0.3842 21.8659 4.0410 25.9070 412.5858

GWCA 0.0057 21.8599 4.0804 25.9402 421.6216

WOA 0.0796 21.8600 4.1050 25.9650 412.4805

GMO 0.0016 21.8591 4.0967 25.9558 383.9965

FIGURE 6
Optimal scheduling solutions on a weekday: (A) Upper-level; and (B) Lower-level.
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FIGURE 7
Result comparison of lower-level optimization on a weekday: (A) Costs; and (B) CEFs.

FIGURE 8
Comparisons of various algorithms for upper-level optimization on weekend: (A) Convergence curve; and (B) Boxplot.

FIGURE 9
Optimal scheduling solutions on a weekend: (A) Upper-level; and (B) Lower-level.
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Besides, the optimal solutions on a weekend are illustrated in
Figure 9, in which the power outputs of GTs are obviously
transferred from daytime to night duration. Similarly, EVs are
assigned to charge with maximum power from 3:00 to 5:00 to
maximize total cost. Figures 10A, B offer the cost comparison of
various algorithms and the CEFs of each EV cluster obtained by WO
andGMOonweekends, respectively. One can easily observe that similar
optimization results are acquired compared with those on the weekdays.

5 Conclusion

This paper develops a bi-level optimal dispatching of
distribution network considering friendly interaction with
electric vehicles, in which a dynamic electrical carbon
emission factor is introduced to precisely calculate the carbon
emission of each node. According to two typical case studies
based on an extended IEEE 33 bus system, three conclusions can
be summarized as follows:

➢ The proposed bi-level optimal dispatching framework
significantly contributes to the security and stability of the
distribution network and the cost decrease of EV aggregators
by considerable planning in power outputs of GTs and
charging transformation of EVs. Peak-valley difference of
the distribution network and the total cost of the EV

aggregator can be decreased by over 98% and 76%,
respectively;

➢ Compared with competitive algorithms, GMO acquires more
satisfactory optimization indicators both in interactive
scheduling tests on the weekday and weekend, which
especially outperform others in convergence accuracy and
stability;

➢ Due to the small cost of carbon emissions compared to
electricity consumption, the reduction in electricity prices
is dominant in the lower-level optimization, and the effect of
electric vehicles participating in carbon reduction is not
obvious. Higher carbon emission prices or multi-objective
optimization may achieve more carbon reduction.

Notably, meta-heuristic algorithms used in this paper may be
limited in accuracy and speed when various complex constraints
are taken into consideration, such as start-stop constraint and
climbing constraint of gas turbines, discharge constraint of
electric vehicles, etc.
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TABLE 4 Statistic results of various algorithms on weekend.

Algorithms Fitness value Electricity cost ($) Carbon emission cost/$ Total cost ($) Mean computation time (s)
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GMO 0.0046 22.1115 4.0364 26.1479 410.0813

FIGURE 10
Result comparison of lower-level optimization on weekend: (A) Costs; and (B) CEFs.
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