1,612 research outputs found

    A new creep model directly using tabulated test data and implemented in ansys

    Get PDF
    Nowadays plastics are increasingly used in highly stressed structures in all kinds of constructions. The time dependency, the so-called viscosity, is a crucial part of the material behavior of plastics. A typical form of viscosity is creep. Creep is the increase of deformation under constant load. In the FE-simulation creep behavior is usually described by creep law functions. The commercial software provide many creep law functions depending on time, stress, strain, temperature and multiple material parameters. To run a creep simulation, the user must define all the parameters which requires a certain effort. Curve-fitting procedures might be of help, the results, however, often are not precise enough. For these reasons, we introduce our new creep model doing the similar job as the creep law functions but being able to directly use the tabulated data of the creep tests without curve-fitting procedures. In this paper, we use the model to create a 3D stress-creep strain-time surface based on the tabulated data like isochronous curves, which is represented by bicubically blended Coons patches to provide a good convergence due to their differentiability. This creep model supports strain hardening, which shows more realistic behavior when the load changes significantly during the simulated proces

    First-Order System Least Squares and the Energetic Variational Approach for Two-Phase Flow

    Full text link
    This paper develops a first-order system least-squares (FOSLS) formulation for equations of two-phase flow. The main goal is to show that this discretization, along with numerical techniques such as nested iteration, algebraic multigrid, and adaptive local refinement, can be used to solve these types of complex fluid flow problems. In addition, from an energetic variational approach, it can be shown that an important quantity to preserve in a given simulation is the energy law. We discuss the energy law and inherent structure for two-phase flow using the Allen-Cahn interface model and indicate how it is related to other complex fluid models, such as magnetohydrodynamics. Finally, we show that, using the FOSLS framework, one can still satisfy the appropriate energy law globally while using well-known numerical techniques.Comment: 22 pages, 8 figures submitted to Journal of Computational Physic

    Photosynthetic characteristics of summer maize under different planting patterns and the responses to nitrogen application of previous crop

    Get PDF
    Maize (Zea mays L.) is one of the most important grain crops in the North China Plain. Management practices affect the photosynthetic characteristics and the production of summer maize. This two-year (2014-2015) study examined the effects of different planting patterns and the application of nitrogen to previous winter wheat (Triticum aestivum L.) on the photosynthetic characteristics, yield and radiation use efficiency (RUE) of summer maize. Field experiments used a two-factor split-plot design with three replicates at Taian, Shandong Province, China (36°09′ N, 117°09′ E). The experiments involved two planting patterns (ridge planting, RP; and uniform row planting, UR) and two nitrogen application levels of previous winter wheat (N1, 112.50 kg ha-1; N2, 225.00 kg ha-1). The results indicated that the application of nitrogen on previous crop and ridge planting of the following crop had significant effects on the photosynthetic characteristics and yields of summer maize. Compared with UR, this study found that RP increased the chlorophyll content index (CCI), leaf area index (LAI), net photosynthetic rate (Pn), dry matter (DM), yield and grain RUE by 4.1%, 6.3%, 5.2%, 6.4%, 8.9% and 9.4%, respectively. The CCI, LAI, Pn, yield, and grain RUE of N2 were 9.7%, 3.3%, 3.7%, 10.0% and 10.1% higher than those of N1, respectively. RP combined with the application of nitrogen on previous crop of winter wheat could increase the CCI, LAI, Pn, DM, ultimately increasing the grain yield and RUE of the following summer’s maize. It was concluded that previous crop nitrogen application and RP pattern treatment resulted in optimal cropping conditions for the North China plain

    Cortical Structure and Cognition in Infants and Toddlers

    Get PDF
    Cortical structure has been consistently related to cognitive abilities in children and adults, yet we know little about how the cortex develops to support emergent cognition in infancy and toddlerhood when cortical thickness (CT) and surface area (SA) are maturing rapidly. In this report, we assessed how regional and global measures of CT and SA in a sample (N = 487) of healthy neonates, 1-year-olds, and 2-year-olds related to motor, language, visual reception, and general cognitive ability. We report novel findings that thicker cortices at ages 1 and 2 and larger SA at birth, age 1, and age 2 confer a cognitive advantage in infancy and toddlerhood. While several expected brain-cognition relationships were observed, overlapping cortical regions were also implicated across cognitive domains, suggesting that infancy marks a period of plasticity and refinement in cortical structure to support burgeoning motor, language, and cognitive abilities. CT may be a particularly important morphological indicator of ability, but its impact on cognition is relatively weak when compared with gestational age and maternal education. Findings suggest that prenatal and early postnatal cortical developments are important for cognition in infants and toddlers but should be considered in relation to other child and demographic factors

    Aspects of the FM Kondo Model: From Unbiased MC Simulations to Back-of-an-Envelope Explanations

    Full text link
    Effective models are derived from the ferromagnetic Kondo lattice model with classical corespins, which greatly reduce the numerical effort. Results for these models are presented. They indicate that double exchange gives the correct order of magnitude and the correct doping dependence of the Curie temperature. Furthermore, we find that the jump in the particle density previously interpreted as phase separation is rather explained by ferromagnetic polarons.Comment: Proceedings of Wandlitz Days of Magnetism 200

    Environmental influences on infant cortical thickness and surface area

    Get PDF
    Cortical thickness (CT) and surface area (SA) vary widely between individuals and are associated with intellectual ability and risk for various psychiatric and neurodevelopmental conditions. Factors influencing this variability remain poorly understood, but the radial unit hypothesis, as well as the more recent supragranular cortex expansion hypothesis, suggests that prenatal and perinatal influences may be particularly important. In this report, we examine the impact of 17 major demographic and obstetric history variables on interindividual variation in CT and SA in a unique sample of 805 neonates who received MRI scans of the brain around 2 weeks of age. Birth weight, postnatal age at MRI, gestational age at birth, and sex emerged as important predictors of SA. Postnatal age at MRI, paternal education, and maternal ethnicity emerged as important predictors of CT. These findings suggest that individual variation in infant CT and SA is explained by different sets of environmental factors with neonatal SA more strongly influenced by sex and obstetric history and CT more strongly influenced by socioeconomic and ethnic disparities. Findings raise the possibility that interventions aimed at reducing disparities and improving obstetric outcomes may alter prenatal/perinatal cortical development

    Three-Particle Correlations from Parton Cascades in Au+Au Collisions

    Get PDF
    We present a study of three-particle correlations among a trigger particle and two associated particles in Au + Au collisions at sNN\sqrt{s_{NN}} = 200 GeV using a multi-phase transport model (AMPT) with both partonic and hadronic interactions. We found that three-particle correlation densities in different angular directions with respect to the triggered particle (`center', `cone', `deflected', `near' and `near-away') increase with the number of participants. The ratio of `deflected' to `cone' density approaches to 1.0 with the increasing of number of participants, which indicates that partonic Mach-like shock waves can be produced by strong parton cascades in central Au+Au collisions.Comment: 9 pages, 6 figures; Final version to appear in Physics Letters

    Di-hadron azimuthal correlation and Mach-like cone structure in parton/hadron transport model

    Full text link
    In the framework of a multi-phase transport model (AMPT) with both partonic and hadronic interactions, azimuthal correlations between trigger particles and associated scattering particles have been studied by the mixing-event technique. The momentum ranges of these particles are 3<pTtrig<63< p^{trig}_T< 6 GeV/cc and 0.15<pTassoc<30.15< p_{T}^{assoc} < 3 GeV/cc (soft), or 2.5<pTtrig<2.5<p^{trig}_T< 4 GeV/cc and 1<pTassoc<2.51< p_{T}^{assoc} < 2.5 GeV/cc (hard) in Au + Au collisions at sNN\sqrt{s_{NN}} = 200 GeV. A Mach-like structure has been observed in correlation functions for central collisions. By comparing scenarios with and without parton cascade and hadronic rescattering, we show that both partonic and hadronic dynamical mechanisms contribute to the Mach-like structure of the associated particle azimuthal correlations. The contribution of hadronic dynamical process can not be ignored in the emergence of Mach-like correlations of the soft scattered associated hadrons. However, hadronic rescattering alone cannot reproduce experimental amplitude of Mach-like cone on away-side, and the parton cascade process is essential to describe experimental amplitude of Mach-like cone on away-side. In addition, both the associated multiplicity and the sum of pTp_{T} decrease, whileas the increases, with the impact parameter in the AMPT model including partonic dynamics from string melting scenario.Comment: 9 pages, 5 figures; Physics Letters B 641, 362-367 (2006
    • …
    corecore