3,811 research outputs found

    Genomic dynamics of transposable elements in the western clawed frog (Silurana tropicalis)

    Get PDF
    Transposable elements (TEs) are repetitive DNA sequences that can make new copies of themselves that are inserted elsewhere in a host genome. The abundance and distributions of TEs vary considerably among phylogenetically diverse hosts. With the aim of exploring the basis of this variation, we evaluated correlations between several genomic variables and the presence of TEs and non-TE repeats in the complete genome sequence of the Western clawed frog (Silurana tropicalis). This analysis reveals patterns of TE insertion consistent with gene disruption but not with the insertional preference model. Analysis of non-TE repeats recovered unique features of their genome-wide distribution when compared with TE repeats, including no strong correlation with exons and a particularly strong negative correlation with GC content. We also collected polymorphism data from 25 TE insertion sites in 19 wild-caught S. tropicalis individuals. DNA transposon insertions were fixed at eight of nine sites and at a high frequency at one of nine, whereas insertions of long terminal repeat (LTR) and non-LTR retrotransposons were fixed at only 4 of 16 sites and at low frequency at 12 of 16. A maximum likelihood model failed to attribute these differences in insertion frequencies to variation in selection pressure on different classes of TE, opening the possibility that other phenomena such as variation in rates of replication or duration of residence in the genome could play a role. Taken together, these results identify factors that sculpt heterogeneity in TE distribution in S. tropicalis and illustrate that genomic dynamics differ markedly among TE classes and between TE and non-TE repeats.published_or_final_versio

    Efficient simulation of the spatial transmission dynamics of influenza

    Get PDF
    Early data from the 2009 H1N1 pandemic (H1N1pdm) suggest that previous studies over-estimated the within-country rate of spatial spread of pandemic influenza. As large spatially resolved data sets are constructed, the need for efficient simulation code with which to investigate the spatial patterns of the pandemic becomes clear. Here, we present a significant improvement to the efficiency of an individual based stochastic disease simulation framework commonly used in multiple previous studies. We quantify the efficiency of the revised algorithm and present an alternative parameterization of the model in terms of the basic reproductive number. We apply the model to the population of Taiwan and demonstrate how the location of the initial seed can influence spatial incidence profiles and the overall spread of the epidemic. Differences in incidence are driven by the relative connectivity of alternate seed locations. The ability to perform efficient simulation allows us to run a batch of simulations and take account of their average in real time. The averaged data are stable and can be used to differentiate spreading patterns that are not readily seen by only conducting a few runs. © 2010 Tsai et al.published_or_final_versio

    Composition of gut microbiota in infants in China and global comparison

    Get PDF
    published_or_final_versio

    Supernova Remnants as Clues to Their Progenitors

    Full text link
    Supernovae shape the interstellar medium, chemically enrich their host galaxies, and generate powerful interstellar shocks that drive future generations of star formation. The shock produced by a supernova event acts as a type of time machine, probing the mass loss history of the progenitor system back to ages of ∼\sim 10 000 years before the explosion, whereas supernova remnants probe a much earlier stage of stellar evolution, interacting with material expelled during the progenitor's much earlier evolution. In this chapter we will review how observations of supernova remnants allow us to infer fundamental properties of the progenitor system. We will provide detailed examples of how bulk characteristics of a remnant, such as its chemical composition and dynamics, allow us to infer properties of the progenitor evolution. In the latter half of this chapter, we will show how this exercise may be extended from individual objects to SNR as classes of objects, and how there are clear bifurcations in the dynamics and spectral characteristics of core collapse and thermonuclear supernova remnants. We will finish the chapter by touching on recent advances in the modeling of massive stars, and the implications for observable properties of supernovae and their remnants.Comment: A chapter in "Handbook of Supernovae" edited by Athem W. Alsabti and Paul Murdin (18 pages, 6 figures

    The infection attack rate and severity of 2009 pandemic H1N1 influenza in Hong Kong

    Get PDF
    Background. Serial cross-sectional data on antibody levels to the 2009 pandemic H1N1 influenza A virus from a population can be used to estimate the infection attack rates and immunity against future infection in the community. Methods. From April through December 2009, we obtained 12,217 serum specimens from blood donors (aged 16-59 years), 2520 specimens from hospital outpatients (aged 5-59 years), and 917 specimens from subjects involved in a community pediatric cohort study (aged 5-14 years). We estimated infection attack rates by comparing the proportions of specimens with antibody titers ≥1:40 by viral microneutralization before and after the first wave of the pandemic. Estimates were validated using paired serum samples from 324 individuals that spanned the first wave. Combining these estimates with epidemiologic surveillance data, we calculated the proportion of infections that led to hospitalization, admission to the intensive care unit (ICU), and death. Results. We found that 3.3% and 14% of persons aged 5-59 years had antibody titers ≥1:40 before and after the first wave, respectively. The overall attack rate was 10.7%, with age stratification as follows: 43.4% in persons aged 5-14 years, 15.8% in persons aged 15-19 years, 11.8% in persons aged 20-29 years, and 4%-4.6% in persons aged 30-59 years. Case-hospitalization rates were 0.47%-0.87% among persons aged 5-59 years. Case-ICU rates were 7.9 cases per 100,000 infections in persons aged 5-14 years and 75 cases per 100,000 infections in persons aged 50-59 years, respectively. Case-fatality rates were 0.4 cases per 100,000 infections in persons aged 5-14 years and 26.5 cases per 100,000 infections in persons aged 50-59 years, respectively. Conclusions. Almost half of all school-aged children in Hong Kong were infected during the first wave. Compared with school children aged 5-14 years, older adults aged 50-59 years had 9.5 and 66 times higher risks of ICU admission and death if infected, respectively. © 2010 by the Infectious Diseases Society of America. All rights reserved.published_or_final_versio

    Protein trafficking through the endosomal system prepares intracellular parasites for a home invasion

    Get PDF
    Toxoplasma (toxoplasmosis) and Plasmodium (malaria) use unique secretory organelles for migration, cell invasion, manipulation of host cell functions, and cell egress. In particular, the apical secretory micronemes and rhoptries of apicomplexan parasites are essential for successful host infection. New findings reveal that the contents of these organelles, which are transported through the endoplasmic reticulum (ER) and Golgi, also require the parasite endosome-like system to access their respective organelles. In this review, we discuss recent findings that demonstrate that these parasites reduced their endosomal system and modified classical regulators of this pathway for the biogenesis of apical organelles

    ARPES: A probe of electronic correlations

    Full text link
    Angle-resolved photoemission spectroscopy (ARPES) is one of the most direct methods of studying the electronic structure of solids. By measuring the kinetic energy and angular distribution of the electrons photoemitted from a sample illuminated with sufficiently high-energy radiation, one can gain information on both the energy and momentum of the electrons propagating inside a material. This is of vital importance in elucidating the connection between electronic, magnetic, and chemical structure of solids, in particular for those complex systems which cannot be appropriately described within the independent-particle picture. Among the various classes of complex systems, of great interest are the transition metal oxides, which have been at the center stage in condensed matter physics for the last four decades. Following a general introduction to the topic, we will lay the theoretical basis needed to understand the pivotal role of ARPES in the study of such systems. After a brief overview on the state-of-the-art capabilities of the technique, we will review some of the most interesting and relevant case studies of the novel physics revealed by ARPES in 3d-, 4d- and 5d-based oxides.Comment: Chapter to appear in "Strongly Correlated Systems: Experimental Techniques", edited by A. Avella and F. Mancini, Springer Series in Solid-State Sciences (2013). A high-resolution version can be found at: http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Reviews/ARPES_Springer.pdf. arXiv admin note: text overlap with arXiv:cond-mat/0307085, arXiv:cond-mat/020850

    Novel role for the innate immune receptor toll-like receptor 4 (TLR4) in the regulation of the wnt signaling pathway and photoreceptor apoptosis

    Get PDF
    Recent evidence has implicated innate immunity in regulating neuronal survival in the brain during stroke and other neurodegenerations. Photoreceptors are specialized light-detecting neurons in the retina that are essential for vision. In this study, we investigated the role of the innate immunity receptor TLR4 in photoreceptors. TLR4 activation by lipopolysaccharide (LPS) significantly reduced the survival of cultured mouse photoreceptors exposed to oxidative stress. With respect to mechanism, TLR4 suppressed Wnt signaling, decreased phosphorylation and activation of the Wnt receptor LRP6, and blocked the protective effect of the Wnt3a ligand. Paradoxically, TLR4 activation prior to oxidative injury protected photoreceptors, in a phenomenon known as preconditioning. Expression of TNFα and its receptors TNFR1 and TNFR2 decreased during preconditioning, and preconditioning was mimicked by TNFα antagonists, but was independent of Wnt signaling. Therefore, TLR4 is a novel regulator of photoreceptor survival that acts through the Wnt and TNFα pathways. © 2012 Yi et al
    • …
    corecore