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Abstract

Early data from the 2009 H1N1 pandemic (H1N1pdm) suggest that previous studies over-estimated the within-country rate
of spatial spread of pandemic influenza. As large spatially resolved data sets are constructed, the need for efficient
simulation code with which to investigate the spatial patterns of the pandemic becomes clear. Here, we present a
significant improvement to the efficiency of an individual-based stochastic disease simulation framework commonly used in
multiple previous studies. We quantify the efficiency of the revised algorithm and present an alternative parameterization of
the model in terms of the basic reproductive number. We apply the model to the population of Taiwan and demonstrate
how the location of the initial seed can influence spatial incidence profiles and the overall spread of the epidemic.
Differences in incidence are driven by the relative connectivity of alternate seed locations. The ability to perform efficient
simulation allows us to run a batch of simulations and take account of their average in real time. The averaged data are
stable and can be used to differentiate spreading patterns that are not readily seen by only conducting a few runs.
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Introduction

The current global spread of a novel influenza strain [1]

highlights gaps in our understanding of the spatial component of

disease transmission at national and regional scales. For example,

the early summer 2009 wave in the United States affected some

populations much more so than others (Centers for Disease Control,

USA), even at similar latitudes. In addition, there was substantial

transmission in parts of southern England throughout the summer

of 2009, but very little in most of northern mainland Europe

(European Centre for Disease Prevention and Control). This slow

progression between national and regional level synchrony is not

obviously consistent with previous theoretical studies of the within-

country dynamics of pandemic influenza [2–4], in which census-

reported commuting patterns and airline flight data were used to

characterize very rapid spatial spread. Explaining these early

patterns of spatial spread for the 2009 pandemic will likely be an

active area of epidemiological research in the coming years.

Stochastic spatial transmission models, in which individuals or

small communities are represented explicitly in space, are an

extension of more traditional approaches and have been a

valuable tool in the study of infectious diseases in humans and

animals [5]. Traditionally, mathematical models of epidemics

often take the form of deterministic differential equations in which

the variables represent the expected number of individuals in

broad disease classes (e.g., susceptible, infected, or recovered) [6].

Although such models can be extended to model the geographic

spread of infectious diseases on patches [7], when it is not clear

which spatial scales are most important, it is difficult to use

compartmental approaches with confidence.

Here, we describe an algorithmic refinement of a spatial stochastic

model of individuals and their communities. This framework was

originally designed to investigate community interventions against

influenza in a generic sense [8]. It was later extended to examine the

optimal response to a bio-terrorist smallpox attack [9] and to examine

the potential for the containment of influenza pandemic in large well-

mixed populations [10]. A spatial component was added to the model

to study the feasibility of containing an emergent influenza pandemic

in a rural setting in Southeast Asia [11]. In its last major development,

the underlying algorithm was parallelized to allow it to run with a

population of 300 million, and used to predict the likely impact of

mitigation measures on an influenza pandemic in the United States

[2]. More recently, the same framework has been used to describe the

likely fall wave transmission dynamics for H1N1pdm in Los Angeles

County [12], and to study the effects of school closure strategies in

Allegheny County, Pennsylvania [13].
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We have implemented a more efficient algorithm for this

popular disease transmission model. We demonstrate increased

computational efficiency compared with previous implementations

and we describe a parameterization scheme for the model using

the basic reproductive number, rather than the per contact

transmission potential. We illustrate the utility of the refined model

with simulation studies of seeding dynamics for a pandemic of

influenza in Taiwan.

Materials and Methods

Our model incorporates epidemiological attributes of viral

infection with computer generated mock population to simulate

the spatio-temporal spreading of pandemic influenza viruses. The

mock population is constructed according to national demograph-

ics and daily commuter (worker flow) statistics from Taiwan

Census 2000 Data (http://www.stat.gov.tw/) in order to retain

some population characteristics. The model is, effectively, a highly

connected network model representing the 23 million people living

in Taiwan. The connection between any two individuals indicates

the possibility of regular (daily) and relatively close contact that

could result in the successful transmission of the flu virus. A

contact group is a close association of individuals, where every

member is connected to all other members in the group. We

designate ten classes of such contact groups in our model:

community, neighborhood, household cluster, household, work

group, high school, middle school, elementary school, daycare

center, and playgroup. It is important to note that these contact

groups do not represent all people at any physical location such as

a workplace or school, but rather the groups of people who share

the same surrounding activities and sustain regular close contact

for potential viral infection. Furthermore, the entire population is

classified into five age groups: preschoolers (0–4 years old), school-

age children (5–18 years old), young adults (19–29 years old),

adults (30–64 years old), and elders (65+ years old). Each

individual is a member of one of the five age groups throughout

the simulation, and can belong to several contact groups

simultaneously at any time. The probability of any two individuals

staying in contact that could result in the successful transmission of

the flu virus is called the contact probability, and an empiric value

is assigned depending on the group where contact occurs and the

ages of both individuals. Age not only affects the probability of an

individual being infected, it also determines the individual’s

daytime contact groups: preschoolers stay either in daycare

centers or in playgroups; school-age children stay either in schools

or in households as dropouts; young adults and adults stay either in

work groups or in households if unemployed. Each simulation runs

in cycles of two 12-hour periods, daytime and nighttime, with each

cycle representing a day in the simulation. The simulation can

cover any specified duration of days; we usually operate in 180

days for typical influenza season, but there are times when 365

days duration is imperative for a slow progressing epidemic.

Contact occurs between individuals in each contact group every

day, there are no exceptions for weekends or holidays until we can

properly ascertain their effects. During nighttime, contact occurs

only in communities, neighborhoods, household clusters, and

households; whereas in the daytime, contact occurs in all contact

groups. Children do not go outside of their residential community

for daytime activities because the probabilities for such occasional

contacts are too low to be captured by any contact group. The

only inter-community transmission occurs when working adults

commute between household and work group as specified by

worker flow data. The implementation details of the base model

are provided in supporting text (Appendix S1); model parameters,

such as the full listing of contact probabilities, are given in the

supporting information of a study by Germann et al. [2]

The discrete-time simulation of infection events in individual-

based epidemic models can be reduced to the generation of

binomial deviates. Within any given model, there can be many types

of infectious individual and many types of susceptible individual.

For example, there can be many age groups and many stages in the

natural history of a disease. The set of all possible pairs in which the

first element is an infectious individual and the other element is a

susceptible individual (an I–S pair) defines the set from which

infection events can be simulated at any point in time. If many of the

pairs have exactly the same probability of generating an infection (S

Table 1. Algorithm 1: Naive algorithm.

foreach time period T do

foreach infected individual I do

update the status of I according to T

if I is infectious then

foreach individual S do

if S is susceptible then

foreach contact group G do

if I and S are in the same group G then

(1) calculate the probability pIS , that S is infected by I

(2) use a random number generator to decide whether S is
infected by I with a probability of pIS

if S is infected then

update the status of S

end

end

end

end

end

end

end

end

doi:10.1371/journal.pone.0013292.t001

Table 2. Algorithm 2: Our improved algorithm.

foreach time period T do

foreach infected individual I do

update the status of I according to T

if I is infectious then

foreach contact group G that I is in do

(1) calculate the infection probabilities pIS between I and all
susceptible individual S in G

(2) use the Sieve algorithm below to decide all individuals in G to be
infected by I

(3) update the status of newly infected individuals

end

end

end

end

doi:10.1371/journal.pone.0013292.t002
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of exactly same type and I of the exactly the same type) then many

infection events can be generated with relatively few binomial

deviates. However, if the pairs are largely different, then many

binomial deviates need to be drawn to generate a similar number of

infections. The introduction of spatial dimensions into individual-

based formulations greatly increases the heterogeneity of the model

because every small group of individuals with a unique location

forms, effectively, their own risk group.

A high-level description of a naive algorithm for the basic model

is presented in Algorithm 1 (Table 1). The basic idea is to

substantiate viral transmission to every susceptible individual in

every contact group of every infectious individual during every 12-

hours period of the simulation.

The Sieve algorithm we have developed greatly improves the

efficiency with which infection events can be generated across

large numbers of similar risk pairs. Here, we briefly describe the

key features of the algorithm as it relates to the efficient simulation

of spatial epidemics. The methods are described in more details

elsewhere [14]. In essence, the approach is to use lazy evaluation

for large groups of pairs with similar probabilities of an infection

event. For example, one infectious individual a in community A
has a certain maximum probability of infecting members of

community B, based on the flow of workers between those two

communities. The precise probability of infection for each

member of community B will depend on their age and other

risk variables. However, the maximum probability for any

individual in group B, pmax, may be very small if the worker

flow between A and B is small. Working with the Sieve algorithm,

our first step is to generate a random variable for the provisional

number of infection events that occur by assuming that all pairs

have the same probability of an infection occurring. This however

generates too many infections, and the second step is to select

Table 3. Algorithm 3: Sieve algorithm.

(1) let pmax~maxfpISg for all susceptible individual S in G

(2) let N be the number of susceptible individuals in G

(3) decide a tight bound K that is the upper bound of possible infected persons according to a binomial distribution with an inclusion probability pmax and N trials

(4) randomly pick K candidates from the group of susceptible individuals in G

foreach picked candidate b do

use a random number generator to decide whether b is infected by I with a probability of pIb=pmax

end

doi:10.1371/journal.pone.0013292.t003

Figure 1. The computation of the probability that individual j will be infected by individual i according to the natural history
model.
doi:10.1371/journal.pone.0013292.g001
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specific pairs at random and either accept or reject provisional

infections using the precise probability of infection between

individual a and each individual b (in the provisional set of

infections in community B). We define the precise probability to

be pb. If we accept each provisional infection event with

probability pb=pmax, it is clear that the overall probability of

individual b being infected is equal to pb. Therefore, our method

reiterates the same stochastic process as if we evaluated each

individual pb separately, and is not an approximation.

A high-level description of our improved algorithm is available

in Tables 2 and 3.

We are able to prove that the statistical behaviors of the Sieve

algorithm are the same as the naive algorithm where each

candidate is decided one by one, sequentially. The proof of this

equivalence is given in [14]. Note that our Sieve algorithm decides

a set of candidates in a batch. One of the reasons that our

algorithm can run faster is because in practice, pmax is very small.

Thus, the size of the candidates K selected in the Sieve algorithm

is much smaller than N, the pool of people to be considered.

By treating the model explicitly as a network, we calculate the

average number of secondary cases a priori, rather than using semi-

empirical methods to calibrate the model. The basic reproductive

number R0 is the expected number of secondary infections

generated by a single typically infectious individual in an otherwise

susceptible population [15]. R0 is a threshold parameter that

determines whether an infectious disease will spread through a

population. Strictly, for models with multiple types of infectious

individuals, R0 should be defined in terms of a next generation

matrix and an eigenvector for the exponential phase of growth. The

eigenvector is important in that it defines what is typical during the

exponential phase. Often, a typical type of infectious individual will

be different from a randomly chosen individual. For network models

of infectious disease, the formal approach presents some problems

because every individual is, essentially, a different type. Therefore,

we follow many previous network models and use the average

number of secondary cases per randomly chosen individual as R0.

Based on the influenza model and parameters, we compute the

probability that infectious individual i will infect susceptible

individual j, namely wij , as follows. First, the infection probability

resulting from i and j’s contact in group k is defined as

pijk~ptrans|ck, where ptrans is the disease-dependent transmission

probability and ck is the group-dependent contact probability.

Second, Dij is the set of i and j’s contact groups in the daytime, and

Nij is the set of i and j’s contact groups during the night. The

intersection of Dij and Nij can be either empty or nonempty. Third,

when the infectious individuals are incubating or asymptomatic, the

infection probability is reduced by a factor of r, where rw1. For

clarity, we define hijk~pijk=r. In our model, the current setting of r

is two, as in [2]. Thus, in conjunction with all daytime and nighttime

contacts, the daily infection probability is calculated by

Pij~1{ P
k[Dij

(1{pijk)

" #
P

k[Nij

(1{pijk)

" #
,

Hij~1{ P
k[Dij

(1{hijk)

" #
P

k[Nij

(1{hijk)

" #
,

where Pij is the daily infection probability when individual i is

symptomatic, and Hij is the daily infection probability when

individual i is incubating or asymptomatic. Finally, by adopting the

Table 4. Comparison of R0.

ptrans Theoretical R0 Sample R0 Simulated R0

0.07 1.114 1.114 (1.133E-03) 1.147 (1.811E-04)

0.08 1.269 1.270 (1.407E-03) 1.262 (6.985E-05)

0.09 1.424 1.424 (1.468E-03) 1.379 (6.777E-05)

0.10 1.577 1.576 (1.558E-03) 1.500 (8.114E-05)

0.11 1.730 1.730 (1.796E-03) 1.622 (7.376E-05)

0.12 1.882 1.882 (2.101E-03) 1.745 (7.623E-05)

0.13 2.033 2.033 (2.154E-03) 1.868 (9.316E-05)

0.14 2.183 2.184 (2.577E-03) 1.990 (9.551E-05)

0.15 2.333 2.333 (2.538E-03) 2.111 (1.011E-04)

0.16 2.482 2.481 (2.808E-03) 2.231 (1.188E-04)

0.17 2.630 2.631 (2.916E-03) 2.349 (1.240E-04)

0.18 2.777 2.777 (2.664E-03) 2.466 (1.202E-04)

List of R0 , calculated by three different methods, for the selected range of ptrans .
Theoretical R0 is the average number of expected secondary infections per
individual in the entire population. Sample R0 is the average of R0 derived from
100 samples of &2,000 initial infectious case; the 95% confidence interval (CI) is
listed in parentheses. Simulated R0 is the average of R0 estimations derived
from 100 baseline simulations; the 95% CI is listed in parentheses.
doi:10.1371/journal.pone.0013292.t004

Figure 2. The precision and efficiency of the Sieve algorithm, as applied to a model of pandemic influenza transmission in Taiwan.
(A) Demonstrates the correct implementation of the Sieve algorithm such that the attack rates from both algorithms stay nearly identical throughout
the selected range of ptrans. (B) Shows the speedup of the Sieve algorithm for the selected range of ptrans. Speedup is defined as the ratio of the
average computation time for the naive algorithm over the Sieve algorithm.
doi:10.1371/journal.pone.0013292.g002
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natural history model, wij can be calculated as the weighted sum of all

branches in Figure 1. The expected number of people infected by

individual i is
P

j wij, when i is the single infectious case in the

otherwise susceptible population. Assuming that each individual has

an equal chance of being the initial infectious case, we calculate the

expected number of secondary infections for everyone in the entire

population; and by definition, the Theoretical R0 is the average of all

such secondary infections. Table 4 lists the value of Theoretical R0 for

a selected range of ptrans, along with two R0 estimations derived from

alternative methods. The first method samples, stratified by age

group, &2,000 people as the index cases and calculates R0 for the

sample group. We then define the Sample R0 as the average R0 from

100 such sample groups. We find that even with a small sample size,

the Sample R0 approximates the Theoretical R0 closely if we take

sufficient samples. In addition, since the model population remains

unchanged throughout the simulations, we can estimate R0 based on

the prevalence of infections at the point of endemic equilibrium [16].

The second method is to average the estimated R0 from 100 baseline

simulations for each ptrans, we call it the Simulated R0. The estimated

R0 for each simulation result is calculated using the following formula

R~
A

N
,

R0&{
ln (1{R)

R
,

where N is the number of people in the population, A is the number

of people who experience the event (become infected), and R is the

proportion of the population who become infected, also known as the

infection attack rate.

Results

The Sieve algorithm shows significant improvement over the

naive algorithm when applied to a real-world application. For a

simulation involving population of 23 million people (approxi-

mately the size of Taiwan’s population), we calibrated the strength

of transmission to have an infection attack rate of 60% (a severe

pandemic) and let the infectious period of an infector be, on

average, three days. Even with a coarse half-day time step, the

naive algorithm would still need to evaluate an order of 1,015

interactions (providing every infectious individual has a non-zero

probability of infecting any susceptible host). By using the re-

sampling approach of the Sieve algorithm, the execution time is

drastically reduced (Figure 2B) without any notable loss of

precision (Figure 2A).

These performance data were derived from groups of 32 runs of

the baseline simulation for each ptrans and algorithm combination.

On a server with dual Intel Xeon W5580, quad-cores, 3.20 GHz

CPUs and 48GB DDR3 memory, and 16 simulations running

concurrently, the Sieve algorithm finishes ptrans~0:20 baseline

simulation in just under three minutes (Figure 3A); in contrast: the

naive algorithm takes about three hours and twelve minutes.

Figure 3A illustrates the average simulation time of the Sieve

Figure 3. Average computation time for various 180-day baseline simulations. (A) Simulation time on a mock Taiwan population for the
selected range of ptrans . (B) Simulation time on multiples of Taiwan population for ptrans = 0.10.
doi:10.1371/journal.pone.0013292.g003

Figure 4. Statistical properties of simulation results. (A) Histogram and the estimated normal distribution for the average day of the 1,000-th
symptomatic case. (B) Quantile-quantile (q-q) plot of the observed distribution with the theoretical normal distribution.
doi:10.1371/journal.pone.0013292.g004

SimTW
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algorithm, including 20 seconds for generating the mock popula-

tion. The simulation time remains relatively low up to a threshold

value (ptrans&0:06), after which both the simulation time and

cumulative number of infections (attack rate in Figure 2A) increase

substantially. Figure 3B shows the time required for the simulation

of multiples of Taiwan’s population for ptrans~0:10, here we

perform a single simulation for each population size due to

memory limitations.

Stochastic convergence
The stochastic process, by nature, involves non-deterministic

trials evolving through time and abiding by miscellaneous

characteristics with probability distributions. This means that

even if all conditions are known in advance, there will be

numerous possible outcomes, while some are more probable than

others. With all trials guided by the same set of characteristics and

probability distributions, the sequence of essentially random events

is expected to settle into a pattern. Multiple realizations of the

same scenario are necessary to elucidate this underlying pattern. A

fast realization tool for the stochastic process is especially beneficial

in dealing with various aspects of the model itself, such as

sensitivity analysis.

Next, we describe experiments conducted to assess the

variability of the simulation results. First, we randomly picked a

mock population and simulated 2,000 baseline realizations with

constant transmission parameters. For each of the 2,000

realizations, we extracted information on important properties,

such as the day of the 1,000-th (10,000-th, …) symptomatic case

and the final number of infected people. We then treated the

statistics from all 2,000 results as if they were the real sample

space and assumed that the parameters of the real unknown

sample space were comparable. Thus, each production run is

merely a sample derived from the 2,000-run sample space

(2KSS). First, we observe that the histograms of the important

properties are all bell-shaped. We use a maximum likelihood

heuristic to estimate the most likely normal distribution to match

the histogram, as shown in Figure 4A. Next, we then compare the

observed distribution with the theoretical normal distribution in a

quantile-quantile (q-q) plot. The q-q plot is a graphical technique

for determining if two data sets come from populations with a

common distribution. It is a plot of the quantiles of the first data

set against the quantiles of the second data set. By a quantile, we

mean the fraction (or percentage) of points below a given value. A

45-degree reference line is also plotted. If the two sets come from

a population with the same distribution, the points should fall

approximately along this reference line [17]. As illustrated in

Figure 4, the normality of the observed distribution is not only

visually correlated on the left, and also statistically verifiable on

the right.

Table 5. Selected Simulation Properties.

Simulation
Property k~20 k~30 k~40

Day of

the 104-th case

0.98 (0.13) 0.79 (0.08) 0.68 (0.05)

Day of

the 105-th case

1.06 (0.14) 0.84 (0.08) 0.72 (0.05)

Day of

the 106-th case

1.06 (0.15) 0.85 (0.09) 0.73 (0.06)

Day of

the 107-th case

1.42 (0.18) 1.14 (0.11) 0.98 (0.07)

Number of
infected people

2,890 (420) 2,330 (270) 2,000 (180)

The relationship between the number of simulation runs (k) and 95% CI for
several simulation properties. The mean and standard deviation, in parentheses,
of 95% CI per 1,000 groups of k simulation runs are shown.
doi:10.1371/journal.pone.0013292.t005

Figure 5. Simulation peaks distribution (with averages) for Taipei and Changhua scenarios when outbreaks occurs with one index
case in 1,000 simulation runs. The y axis shows the maximum daily new symptomatic cases of each simulated outbreaks (Taipei scenario, 95% CI
192,722–194,729; Changhua scenario, 95% CI 234,307–236,560), the x axis shows the day that peak occurs (Taipei scenario, 95% CI 129–131;
Changhua scenario, 95% CI 130–132).
doi:10.1371/journal.pone.0013292.g005
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We then assess the variability among groups of simulation

results and attempt to establish an acceptable number of

simulation runs that would represent all possible outcomes with

high confidence. We calculate the 95% CI for selected important

properties in groups of k simulation runs, where k ranges from 2 to

100. For each value of k, we conduct 1,000 experiments by

sampling k instances out of 2KSS, and calculate the corresponding

95% CIs for each experiment. We then calculate the mean and

standard deviation of 95% CIs among 1,000 experiments for each

k. In Table 5, we summarize the mean and standard deviation of

95% CIs from experiments of 20, 30 and 40 simulation runs.

Based on these numbers, it is safe to say that a sensible decision is

to repeat each simulation at least 30 times.

Practical use of efficient simulations
To demonstrate the practical use of the model, we simulate a

severe flu pandemic, R0&1:6, in Taiwan. We design two scenarios

to best describe typical epidemic outbreaks: (1) An imported

infectious case by seeding one index case in Taipei, which is at the

northern end of the island and is densely populated with over 2.6

million people in the city and over 5 million in the greater

metropolitan area; as the political, economic, and cultural center

of the nation, Taipei is the most likely first stop for all international

travelers. (2) An endemic outbreak by seeding one index case in a

mid-latitude, less connected, remote farming town in Changhua

county, which has 1.3 million residents and the highest

concentration of chicken livestock in the country. We run each

scenario 1,000 times. For the Taipei scenario, the single index case

causes an outbreak in 513 out of 1,000 runs; while for the

Changhua scenario, 543 runs result in outbreaks. We plot the

averages of these outbreaks and observe that the epidemic

progresses more rapidly from Taipei to other areas, resulting in

a more synchronized epidemic; that is, the number of incidences is

similar in quite distant locations during the middle part of the

epidemic. In contrast, Changhua is less well connected, and the

epidemic takes longer to spread to other parts of the population.

Hence, the number of incidences in the mid-latitude area close to

the seed is higher than in other areas. This results in a slightly

slower epidemic (in terms of growth), but the peak is more

pronounced for the Changhua scenario. These simulation runs

illustrate the general principal that when epidemics fail to

synchronize spatially, the overall incidence is less peaked.

However, the results presented here do not describe local

incidences of infection, which would be more ‘‘peaky’’. The

animation in Movie S1 (which is published as supporting

information) demonstrates the spatial epidemiology of infectious

disease for both scenarios. The simulation cases presented in this

movie were selected to approximate, as closely as possible, the

Figure 6. County level spatio-temporal spreading patterns for Taipei and Changhua scenarios.
doi:10.1371/journal.pone.0013292.g006
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calculated average of all 500+ simulation runs for each scenario.

We also prepared another movie (Movie S2, which is published as

supporting information) by selecting simulation runs that were

farther away from the average behavior of each scenario to show

the unpredictable nature of the stochastic process.

In Movie S3 (which is published as supporting information), we

use a different representation to demonstrate the county level

spread of infectious disease, where each rectangular bar represents

a county or major city in Taiwan; hence, their geographical

relationships are also presented in these diagrams. The height of

each bar indicates the number of new symptomatic cases daily;

hence, we can easily observe the epidemic’s critical level for each

location.

If we use the peak of new cases and its date as an indicator of

each outbreak and plot the distribution of all simulation runs for

both scenarios, we find that although they are reasonably scattered

in a disk area, the two disks have a non-trivial overlay (Figure 5).

Such observations may not be possible if only a few simulations are

conducted. Figure 6 shows the spatio-temporal spreading patterns

for the Taipei and Changhua scenarios. In each figure, the whole

island of Taiwan is plotted as a rectangle. The day that an area

reports the first symptomatic case is plotted on the left; and the day

that the peak occurs in an area is plotted on the right. We observe

that Changhua has a less uniform spatio-temporal spreading

pattern. The Taipei scenario exhibits more coordinated behavior.

Discussion

We have described the application of a general re-sampling

algorithm to a widely used spatial model of infectious disease

transmission [8]. The resulting epidemic simulation tool achieves

substantial speedups compared with our own implementation of a

naive algorithm for the same model. Although derived indepen-

dently, the resulting simulation algorithm is similar to those used to

investigate the properties of the re-emergence of smallpox in the

UK [18], and the pandemic influenza in Thailand [19], the

United Kingdom and the United States [4].

We believe that further research on the underlying algorithms

for the model presented here and similar models is warranted. For

example, there are many ecological questions about the spatial

properties of the current H1N1pdm — not least the need to

explain the high degree of spatio-temporal variability observed on

a continental scale. More generally, on any scale, improved

computational efficiency of epidemic models, similar to that

demonstrated here, will substantially increase their utility as tools

for theoretical investigation.

Supporting Information

Appendix S1 Supporting text with implementation details.

Found at: doi:10.1371/journal.pone.0013292.s001 (0.16 MB

PDF)

Movie S1 Visualization of typical spatio-temporal spreading

patterns of an influenza epidemic in Taiwan with index case

seeding in two distinct locales. The daily prevalence of

symptomatic cases in each community is presented as an epidemic

alert level on a logarithmic color scale, with red indicating the

most critical situation when 3% or more of the population become

symptomatic.

Found at: doi:10.1371/journal.pone.0013292.s002 (11.02 MB

AVI)

Movie S2 Spatio-temporal spreading patterns of a rare influenza

epidemic in Taiwan with index case seeding in two distinct locales.

Found at: doi:10.1371/journal.pone.0013292.s003 (11.04 MB

AVI)

Movie S3 County level visualization of influenza epidemic

simulations in Taiwan.

Found at: doi:10.1371/journal.pone.0013292.s004 (7.28 MB AVI)
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