125 research outputs found

    Over-Expression of a Cytochrome P450 Is Associated with Resistance to Pyriproxyfen in the Greenhouse Whitefly Trialeurodes vaporariorum

    Get PDF
    Copyright: 2012 Karatolos et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background: The juvenile hormone mimic, pyriproxyfen is a suppressor of insect embryogenesis and development, and is effective at controlling pests such as the greenhouse whitefly Trialeurodes vaporariorum (Westwood) which are resistant to other chemical classes of insecticides. Although there are reports of insects evolving resistance to pyriproxyfen, the underlying resistance mechanism(s) are poorly understood. Results: Bioassays against eggs of a German (TV8) population of T. vaporariorum revealed a moderate level (21-fold) of resistance to pyriproxyfen. This is the first time that pyriproxyfen resistance has been confirmed in this species. Sequential selection of TV8 rapidly generated a strain (TV8pyrsel) displaying a much higher resistance ratio (>4000-fold). The enzyme inhibitor piperonyl butoxide (PBO) suppressed this increased resistance, indicating that it was primarily mediated via metabolic detoxification. Microarray analysis identified a number of significantly over-expressed genes in TV8pyrsel as candidates for a role in resistance including cytochrome-P450 dependent monooxygenases (P450s). Quantitative PCR highlighted a single P450 gene (CYP4G61) that was highly over-expressed (81.7-fold) in TV8pyrsel. Conclusion: Over-expression of a single cytochrome P450 gene (CYP4G61) has emerged as a strong candidate for causing the enhanced resistance phenotype. Further work is needed to confirm the role of the encoded P450 enzyme CYP4G61 in detoxifying pyriproxyfen.Peer reviewedFinal Published versio

    Zinc Finger 280B regulates sGCα1 and p53 in prostate cancer cells.

    Get PDF
    The Zinc Finger (ZNF) 280B protein was identified as an unexpected target of an shRNA designed for sGCα1. Further analysis showed that these two proteins are connected in another way, with 280B up-regulation of sGCα1 expression. Knock-down and over-expression experiments showed that 280B serves pro-growth and pro-survival functions in prostate cancer. Surprisingly however, these pro-cancer functions of 280B are not mediated by sGCα1, which itself has similar functions in prostate cancer, but by down-regulated p53. The p53 protein is a second target of 280B in prostate cancer, but unlike sGCα1, p53 is down-regulated by 280B. 280B induces p53 nuclear export, leading to subsequent proteasomal degradation. The protein responsible for p53 regulation by 280B is Mdm2, the E3 ubiquitin ligase that promotes p53 degradation by inducing its nuclear export. We show here that 280B up-regulates expression of Mdm2 in prostate cancer cells, and this regulation is via the Mdm2 promoter. To demonstrate an in vivo relevance to this interaction, expression studies show that 280B protein levels are up-regulated in prostate cancer and these levels correspond to reduced levels of p53. Thus, by enhancing the expression of Mdm2, the uncharacterized 280B protein provides a novel mechanism of p53 suppression in prostate cancer

    Androgen up-regulation of Twist1 gene expression is mediated by ETV1

    No full text
    Twist1, a basic helix-loop-helix transcription factor that regulates a number of genes involved in epithelial-to-mesenchymal transition (EMT), is upregulated in prostate cancer. Androgen regulation of Twist1 has been reported in a previous study. However, the mechanism of androgen regulation of the Twist1 gene is not understood because the Twist1 promoter lacks androgen receptor (AR)-responsive elements. Previous studies have shown that the Twist1 promoter has putative binding sites for PEA3 subfamily of ETS transcription factors. Our lab has previously identified Ets Variant 1 (ETV1), a member of the PEA3 subfamily, as a novel androgen-regulated gene that is involved in prostate cancer cell invasion through unknown mechanism. In view of these data, we hypothesized that androgen-activated AR upregulates Twist1 gene expression via ETV1. Our data confirmed the published work that androgen positively regulates Twist1 gene expression and further showed that this positive effect was directed at the Twist1 promoter. The positive effect of androgen on Twist1 gene expression was abrogated upon disruption of AR expression by siRNA or of AR activity by Casodex. More importantly, our data show that disruption of ETV1 leads to significant decrease in both androgen-mediated upregulation as well as basal level of Twist1, which we are able to rescue upon re-expression of ETV1. Indeed, we are able to show that ETV1 mediates the androgen upregulation of Twist1 by acting on the proximal region of Twist1 promoter. Additionally, our data show that Twist1 regulates prostate cancer cell invasion and EMT, providing a possible mechanism by which ETV1 mediates prostate cancer cell invasion. In conclusion, in this study we report Twist1 as an indirect target of AR and androgen regulation through ETV1

    A peptide against soluble guanylyl cyclase α1: a new approach to treating prostate cancer.

    Get PDF
    Among the many identified androgen-regulated genes, sGCα1 (soluble guanylyl cyclase α1) appears to play a pivotal role in mediating the pro-cancer effects of androgens and androgen receptor. The classical role for sGCα1 is to heterodimerize with the sGCβ1 subunit, forming sGC, the enzyme that mediates nitric oxide signaling by catalyzing the synthesis of cyclic guanosine monophosphate. Our published data show that sGCα1 can drive prostate cancer cell proliferation independent of hormone and provide cancer cells a pro-survival function, via a novel mechanism for p53 inhibition, both of which are independent of sGCβ1, NO, and cGMP. All of these properties make sGCα1 an important novel target for prostate cancer therapy. Thus, peptides were designed targeting sGCα1 with the aim of disrupting this protein's pro-cancer activities. One peptide (A-8R) was determined to be strongly cytotoxic to prostate cancer cells, rapidly inducing apoptosis. Cytotoxicity was observed in both hormone-dependent and, significantly, hormone-refractory prostate cancer cells, opening the possibility that this peptide can be used to treat the usually lethal castration-resistant prostate cancer. In mouse xenograft studies, Peptide A-8R was able to stop tumor growth of not only hormone-dependent cells, but most importantly from hormone-independent cells. In addition, the mechanism of Peptide A cytotoxicity is generation of reactive oxygen species, which recently have been recognized as a major mode of action of important cancer drugs. Thus, this paper provides strong evidence that targeting an important AR-regulated gene is a new paradigm for effective prostate cancer therapy

    Pure and functionally homogeneous recombinant retinoid X receptor.

    No full text
    International audienceMouse retinoid X receptor alpha (RXR alpha) lacking the amino-terminal region A/B (RXR alpha delta AB) has been purified to more than 98% purity and functional homogeneity from bacterial and baculovirus-based recombinant expression systems with yields of 2-8 mg/liter of culture. The purified protein is soluble, and fluorescence quenching analysis demonstrated that it binds its cognate ligand 9-cis-retinoic acid (9-cis-RA) stoichiometrically, and with high affinity. Compared with RXR delta AB expressed in COS-1 cells, bacterially and baculovirus-expressed proteins bind approximately 10 and 5 times less efficiently to direct repeat 1 (DR1) DNA elements, respectively, suggesting that animal cell-specific modification of RXR or interaction with other animal cell-specific factors may modulate DNA binding. 9-cis-RA did not stimulate DR1 binding of functional RXR delta AB expressed in Escherichia coli, Sf9 or COS-1 cells. The previously reported ligand effect that can be observed with in vitro made receptor may therefore be a consequence of a conformational stabilization of improperly folded in vitro synthesized protein
    • …
    corecore