16 research outputs found

    Microbiological Evaluation of Water Quality from Urban Watersheds for Domestic Water Supply Improvement

    Get PDF
    Agricultural and urban runoffs may be major sources of pollution of water bodies and major sources of bacteria affecting the quality of drinking water. Of the different pathways by which bacterial pathogens can enter drinking water, this one has received little attention to date; that is, because soils are often considered to be near perfect filters for the transport of bacterial pathogens through the subsoil to groundwater. The goals of this study were to determine the distribution, diversity, and antimicrobial resistance of pathogenic Escherichia coli isolates from low flowing river water and sediment with inputs from different sources before water is discharged into ground water and to compare microbial contamination in water and sediment at different sampling sites. Water and sediment samples were collected from 19 locations throughout the watershed for the isolation of pathogenic E. coli. Heterotrophic plate counts and E. coli were also determined after running tertiary treated water through two tanks containing aquifer sand material. Presumptive pathogenic E. coli isolates were obtained and characterized for virulent factors and antimicrobial resistance. None of the isolates was confirmed as Shiga toxin E. coli (STEC), but as others, such as enterotoxigenic E. coli (ETEC). Pulsed field gel electrophoresis (PFGE) was used to show the diversity E. coli populations from different sources throughout the watershed. Seventy six percent of the isolates from urban sources exhibited resistance to more than one antimicrobial agent. A subsequent filtration experiment after water has gone through filtration tanks containing aquifer sand material showed that there was a 1 to 2 log reduction in E. coli in aquifer sand tank. Our data showed multiple strains of E. coli without virulence attributes, but with high distribution of resistant phenotypes. Therefore, the occurrence of E. coli with multiple resistances in the environment is a matter of great concern due to possible transfer of resistant genes from nonpathogenic to pathogenic strains that may result in increased duration and severity of morbidity

    Genetic Diversity and Antimicrobial Resistance of Escherichia coli from Human and Animal Sources Uncovers Multiple Resistances from Human Sources

    Get PDF
    Escherichia coli are widely used as indicators of fecal contamination, and in some cases to identify host sources of fecal contamination in surface water. Prevalence, genetic diversity and antimicrobial susceptibility were determined for 600 generic E. coli isolates obtained from surface water and sediment from creeks and channels along the middle Santa Ana River (MSAR) watershed of southern California, USA, after a 12 month study. Evaluation of E. coli populations along the creeks and channels showed that E. coli were more prevalent in sediment compared to surface water. E. coli populations were not significantly different (P = 0.05) between urban runoff sources and agricultural sources, however, E. coli genotypes determined by pulsed-field gel electrophoresis (PFGE) were less diverse in the agricultural sources than in urban runoff sources. PFGE also showed that E. coli populations in surface water were more diverse than in the sediment, suggesting isolates in sediment may be dominated by clonal populations.Twenty four percent (144 isolates) of the 600 isolates exhibited resistance to more than one antimicrobial agent. Most multiple resistances were associated with inputs from urban runoff and involved the antimicrobials rifampicin, tetracycline, and erythromycin. The occurrence of a greater number of E. coli with multiple antibiotic resistances from urban runoff sources than agricultural sources in this watershed provides useful evidence in planning strategies for water quality management and public health protection

    Linking Microbial Community Composition in Treated Wastewater with Water Quality in Distribution Systems and Subsequent Health Effects

    No full text
    The increases in per capita water consumption, coupled in part with global climate change have resulted in increased demands on available freshwater resources. Therefore, the availability of safe, pathogen-free drinking water is vital to public health. This need has resulted in global initiatives to develop sustainable urban water infrastructure for the treatment of wastewater for different purposes such as reuse water for irrigation, and advanced waste water purification systems for domestic water supply. In developed countries, most of the water goes through primary, secondary, and tertiary treatments combined with disinfectant, microfiltration (MF), reverse osmosis (RO), etc. to produce potable water. During this process the total bacterial load of the water at different stages of the treatment will decrease significantly from the source water. Microbial diversity and load may decrease by several orders of magnitude after microfiltration and reverse osmosis treatment and falling to almost non-detectable levels in some of the most managed wastewater treatment facilities. However, one thing in common with the different end users is that the water goes through massive distribution systems, and the pipes in the distribution lines may be contaminated with diverse microbes that inhabit these systems. In the main distribution lines, microbes survive within biofilms which may contain opportunistic pathogens. This review highlights the role of microbial community composition in the final effluent treated wastewater, biofilms formation in the distribution systems as the treated water goes through, and the subsequent health effects from potential pathogens associated with poorly treated water. We conclude by pointing out some basic steps that may be taken to reduce the accumulation of biofilms in the water distribution systems

    Continuous Flow-Constructed Wetlands for the Treatment of Swine Waste Water

    No full text
    The microbiological quality of treated waste water is always a concern when waste water is disposed to the environment. However, when treated appropriately, such water can serve many purposes to the general population. Therefore, the treatment and removal of contaminants from swine waste water by continuous flow-constructed wetlands involves complex biological, physical, and chemical processes that may produce better quality water with reduced levels of contaminants. Swine waste contains E. coli populations and other bacterial contaminants originating from swine houses through constructed wetlands, but little is known about E. coli population in swine waste water. To assess the impacts of seasonal variations and the effect of the wetland layout/operations on water quality, E. coli isolates were compared for genetic diversity using repetitive extragenic palindromic polymerase chain reaction (REP-PCR). None of the isolates was confirmed as Shiga toxin producing E. coli O157:H7 (STEC); however, other pathotypes, such as enterotoxigenic E. coli (ETEC) were identified. Using a 90% similarity index from REP-PCR, 69 genotypes out of 421 E. coli isolates were found. Our data showed that the E. coli population was significantly (p = 0.036) higher in November than in March and August in most of the wetland cells. Furthermore, there was a significant (p = 0.001) reduction in E. coli populations from wetland influent to the final effluent. Therefore, the use of continuous flow-constructed wetlands may be a good treatment approach for reducing contaminants from different waste water sources

    Potential human pathogenic bacteria in a mixed urban watershed as revealed by pyrosequencing.

    Get PDF
    Current microbial source tracking (MST) methods for water depend on testing for fecal indicator bacterial counts or specific marker gene sequences to identify fecal contamination where potential human pathogenic bacteria could be present. In this study, we applied 454 high-throughput pyrosequencing to identify bacterial pathogen DNA sequences, including those not traditionally monitored by MST and correlated their abundances to specific sources of contamination such as urban runoff and agricultural runoff from concentrated animal feeding operations (CAFOs), recreation park area, waste-water treatment plants, and natural sites with little or no human activities. Samples for pyrosequencing were surface water, and sediment collected from 19 sites. A total of 12,959 16S rRNA gene sequences with average length of ≤400 bp were obtained, and were assigned to corresponding taxonomic ranks using ribosomal database project (RDP), Classifier and Greengenes databases. The percent of total potential pathogens were highest in urban runoff water (7.94%), agricultural runoff sediment (6.52%), and Prado Park sediment (6.00%), respectively. Although the numbers of DNA sequence tags from pyrosequencing were very high for the natural site, corresponding percent potential pathogens were very low (3.78-4.08%). Most of the potential pathogenic bacterial sequences identified were from three major phyla, namely, Proteobacteria, Bacteroidetes, and Firmicutes. The use of deep sequencing may provide improved and faster methods for the identification of pathogen sources in most watersheds so that better risk assessment methods may be developed to enhance public health

    16S rRNA sequence similarity to known pathogens within each genus.

    No full text
    <p>The five most abundant genus are shown with their distributions within each source.</p

    List of potential human pathogenic bacterial sequences identified from different sources within the Santa Ana watershed using 454 pyrosequencing obtained from RDP Classifier data.

    No full text
    <p>N = Natural site; W = Water, S = sediment, CC = Cypress Channel, CN = Chino Creek; P = Prado wetland area: e.g. NS = Natural site sediment.</p

    Sampling locations for middle Santa Ana River pathogen source evaluation study<sup>*</sup>.

    No full text
    *<p>Modified from Ibekwe et al. <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0079490#pone.0079490-Ibekwe2" target="_blank">[21]</a>.</p><p>Sampling from site S10 was discontinued after one sampling due to construction activities on the site.</p><p>GPS; geographic positioning system.</p><p>OCWD; Orange County Water District.</p><p>WWTP; waste water treatment plant.</p

    Rarefaction curves of seven sources at cutoff of 3%.

    No full text
    <p>Two sources (urban runoff water and sediment) are not included because of low sequence tags obtained.</p
    corecore