78 research outputs found

    Discovery of small molecule inhibitors of the interaction of the thyroid hormone receptor with transcriptional coregulators

    Get PDF
    Thyroid hormone (3,5,3′-triiodo-l-thyronine, T3) is an endocrine hormone that exerts homeostatic regulation of basal metabolic rate, heart rate and contractility, fat deposition, and other phenomena (1, 2). T3 binds to the thyroid hormone receptors (TRs) and controls their regulation of transcription of target genes. The binding of TRs to thyroid hormone induces a conformational change in TRs that regulates the composition of the transcriptional regulatory complex. Recruitment of the correct coregulators (CoR) is important for successful gene regulation. In principle, inhibition of the TR-CoR interaction can have a direct influence on gene transcription in the presence of thyroid hormones. Herein we report a high throughput screen for small molecules capable of inhibiting TR coactivator interactions. One class of inhibitors identified in this screen was aromatic β-aminoketones, which exhibited IC50 values of ∼2 μm. These compounds can undergo a deamination, generating unsaturated ketones capable of reacting with nucleophilic amino acids. Several experiments confirm the hypothesis that these inhibitors are covalently bound to TR. Optimization of these compounds produced leads that inhibited the TR-CoR interaction in vitro with potency of ∼0.6 μm and thyroid signaling in cellular systems. These are the first small molecules irreversibly inhibiting the coactivator binding of a nuclear receptor and suppressing its transcriptional activity

    A High-Throughput Screen Indicates Gemcitabine and JAK Inhibitors May be Useful for Treating Pediatric AML

    Get PDF
    Improvement in survival has been achieved for children and adolescents with AML but is largely attributed to enhanced supportive care as opposed to the development of better treatment regimens. High risk subtypes continue to have poor outcomes with event free survival rates \u3c 40% despite the use of high intensity chemotherapy in combination with hematopoietic stem cell transplant. Here we combine high-throughput screening, intracellular accumulation assays, and in vivo efficacy studies to identify therapeutic strategies for pediatric AML. We report therapeutics not currently used to treat AML, gemcitabine and cabazitaxel, have broad anti-leukemic activity across subtypes and are more effective relative to the AML standard of care, cytarabine, both in vitro and in vivo. JAK inhibitors are selective for acute megakaryoblastic leukemia and significantly prolong survival in multiple preclinical models. Our approach provides advances in the development of treatment strategies for pediatric AML

    Metabolic activation of CaMKII by coenzyme A

    Get PDF
    Active metabolism regulates oocyte cell death via calcium/calmodulin-dependent protein kinase II (CaMKII)-mediated phosphorylation of caspase-2, but the link between metabolic activity and CaMKII is poorly understood. Here we identify coenzyme A (CoA) as the key metabolic signal that inhibits Xenopus laevis oocyte apoptosis by directly activating CaMKII. We found that CoA directly binds to the CaMKII regulatory domain in the absence of Ca(2+) to activate CaMKII in a calmodulin-dependent manner. Furthermore, we show that CoA inhibits apoptosis not only in X. laevis oocytes but also in Murine oocytes. These findings uncover a direct mechanism of CaMKII regulation by metabolism and further highlight the importance of metabolism in preserving oocyte viability

    An Integrated In Vitro and In Vivo High-Throughput Screen Identifies Treatment Leads for Ependymoma

    Get PDF
    SummaryUsing a mouse model of ependymoma—a chemoresistant brain tumor—we combined multicell high-throughput screening (HTS), kinome-wide binding assays, and in vivo efficacy studies, to identify potential treatments with predicted toxicity against neural stem cells (NSC). We identified kinases within the insulin signaling pathway and centrosome cycle as regulators of ependymoma cell proliferation, and their corresponding inhibitors as potential therapies. FDA approved drugs not currently used to treat ependymoma were also identified that posses selective toxicity against ependymoma cells relative to normal NSCs both in vitro and in vivo, e.g., 5-fluorouracil. Our comprehensive approach advances understanding of the biology and treatment of ependymoma including the discovery of several treatment leads for immediate clinical translation

    Ligand Binding Mode Prediction by Docking: Mdm2/Mdmx Inhibitors as a Case Study

    No full text
    The p53-binding domains of Mdm2 and Mdmx, two negative regulators of the tumor suppressor p53, are validated targets for cancer therapeutics, but correct binding poses of some proven inhibitors, particularly the nutlins, have been difficult to obtain with standard docking procedures. Virtual screening pipelines typically draw from a database of compounds represented with 1D or 2D structural information from which one or more 3D conformations must be generated. These conformations are then passed to a docking algorithm that searches for optimal binding poses on the target protein. This work tests alternative pipelines using several commonly used conformation generation programs (LigPrep, ConfGen, MacroModel, and Corina/Rotate) and docking programs (GOLD, Glide, MOE-dock, and AutoDock Vina) for their ability to reproduce known poses for a series of Mdmx and/or Mdm2 inhibitors, including several nutlins. Most combinations of these programs using default settings fail to find correct poses for the nutlins but succeed for all other compounds. Docking success for the nutlin class requires either computationally intensive conformational exploration or an “anchoring” procedure that incorporates knowledge of the orientation of the central imidazoline ring

    A high-throughput quality control method for assessing the serial dilution performance of dose–response plates with acoustic ejection mass spectrometry

    No full text
    This study aimed to develop a streamlined method for evaluating the dilution ratio of drug dose–response plates created by automated liquid handlers in the early stages of drug discovery. The quantitative techniques commonly used for this purpose have restrictions due to their limited linear dynamic range and inaccuracies in assessing serial dilution performance. To address this challenge, we describe a method based on acoustic ejection mass spectrometry (AEMS). The method involves using standard compounds and an internal standard to evaluate each dilution point in quality control (QC) plates. The samples are transferred to a chromatography-free tandem mass spectrometry system through an acoustic source, enabling the analysis of one sample per three seconds from a microtiter plate. This approach provides precise, accurate, label-free, and rapid data acquisition to support high-throughput screening efforts
    corecore