22 research outputs found

    It Takes an Individual Plant to Raise a Community: TRFLP Analysis of the Rhizosphere Microbial Community of Two Pairs of High- and Low-Metal-Accumulating Plants

    Get PDF
    We used terminal restriction fragment length polymorphism (TRFLP) analysis to look at the microbial community profiles of the rhizosphere surrounding two pairs of high- and low-metal (Cd)-accumulating plants (Brassica and Triticum). Unexpectedly, the microbial community did not vary with soil type, time, plant type, or metal-accumulating ability of the plant. Instead, when a plant\u27s metal-accumulating ability was well matched to the level of metal contamination in the soil, the microbial populations in the rhizosphere were different than those of the seed endophytes and bulk soil. Unmatched plants had the same microbial community as bulk soil. The plant interaction with the soil, therefore, is essential to forming the bacterial community in the rhizosphere

    Site- and Species-Specific Patterns of Metal Bioavailability in Edible Plants

    Get PDF
    Differences in metal uptake between plant species and soil types were compared to assess the safe use of mildly contaminated soils for the growth of edible food crops. Accumulation of metals in five plant species grown in each of three field soils and a commercial soil were evaluated in a controlled environment room. Metal bioavailability varied more with plant species than with type of soil. Among a number of physical and chemical soil properties that were determined, high metal content and low percent organic matter were the best predictors of increased metal bioavailability. Contamination levels of metals measured in soil and vegetable samples were used to calculate bioconcentration factors and hazard quotients. The results indicated significant differences between plant species. The most metal-accumulating species was carrot and the most mobile element was cadmium. Some hazard quotients exceeded the threshold value of 1, even in soils considered uncontaminated by current guidelines. Overall, these results reinforce the need to include soil characteristics when setting threshold guidelines for metal content of agricultural soils and indicate the need for species-specific planting guidelines

    Compost Application Affects Metal Uptake in Plants Grown in Urban Garden Soils and Potential Human Health Risk

    Get PDF
    Purpose This study explores the effect of varying organic matter content on the potential human health risk of consuming vegetables grown in urban garden soils. Materials and methods Metal accumulation among edible tissues of green bean (Phaseolus vulgaris L.), lettuce (Lactuca sativa L.) and carrot (Daucus carota L.) was determined for plants grown in five urban garden soils amended with 0, 9, or 25% (v/v) compost. Potential risk to human health was assessed by calculating a bioconcentration factor and a hazard quotient. Results and discussion Overall, the consumption of lettuce and green bean pods grown in some urban gardens posed a potential human health risk due to unacceptably high concentrations of cadmium or lead. In many cases, compost amendment increased the accumulation of metals in the vegetables. Even in soils considered uncontaminated by current guidelines, some hazard quotients exceeded the threshold value of 1. The compost used in this study had a high fulvic acid to humic acid ratio, which may explain increased concentrations of metals in plants grown in compost-amended soils. Conclusions These results indicate a need to include soil characteristics, specifically organic matter quality, when setting threshold criteria for metal content of urban garden soils

    Accumulation of Cadmium in Near-Isogenic Lines of Durum Wheat (Triticum Turgidum L. Var Durum): the Role of Transpiration

    Get PDF
    Concentrations of cadmium in the grain of durum wheat (Triticum turgidum L. var durum) are often above the internationally acceptable limit of 0.2 mg kg−1. Cultivars that vary in concentrations of cadmium in the grain have been identified but the physiology behind differential accumulation has not been determined. Three pairs of near-isogenic lines (isolines) of durum wheat that vary in aboveground cadmium accumulation (8982-TL ‘high’ and ‘low’, W9260-BC ‘high’ and ‘low’, and W9261-BG ‘high’ and ‘low’) were used to test the hypothesis that the greater amounts of cadmium in shoots of the ‘high’ isolines are correlated with greater volumes of water transpired. In general, cadmium content was positively correlated with transpiration only in the ‘low’ isolines. Although shoots of the ‘high’ isolines of W9260-BC and W9261-BG contained higher concentrations of cadmium than did their corresponding ‘low’ isolines, they did not transpire larger volumes of water. In addition, isolines of 8982-TL transpired less water than did the other pairs of isolines yet both ‘high’ and ‘low’ isolines of 8982-TL contained higher amounts of cadmium than did the other pairs. The difference between ‘high’ and ‘low’ isolines appears to be related to the relative contribution of transpiration to cadmium translocation to the shoot. Increased transpiration was associated with increased cadmium content in the ‘low’ isolines but in the ‘high’ isolines increased cadmium in the shoot occurred independently of the volume of water transpired

    Does the Response of Insect Herbivores to Cadmium Depend on Their Feeding Strategy?

    Get PDF
    Phytoremediation has been proposed for the elimination of toxic metals in soil, yet little attention has been given to the performance of insects that feed on contaminant-tolerant plants. We tested the performance of two herbivores with different feeding behaviors, the cabbage looper, Trichoplusia ni, and the green peach aphid, Myzus persicae, reared on cadmium-tolerant Brassica juncea plants that contained different concentrations of cadmium. We also tested the performance of the aphid parasitoid Aphidius colemani developing in aphids reared on plants with different levels of cadmium. The hypothesis tested was that the chewing insect would be more negatively affected than the sucking insect, because of the localization of cadmium within the host plant, and that the aphid parasitoid would not be affected. We also compared the performance of T. ni on artificial diet with different levels of cadmium. Neither the phloem-feeding aphid nor its parasitoid was affected by cadmium in the host plant. The effects of cadmium on the foliage-feeding cabbage looper varied, with negative effects on development observed in experiments with artificial diet but not in those using natural host plants. These data, together with information available in the literature, support the idea that the effects of toxic metals present in a host plant may be influenced by a herbivore’s feeding strategy. However, a wide range of chewing and sucking species needs to be tested to confirm this hypothesis

    Localization and Chemical Speciation of Cadmium in the Roots of Barley and Lettuce

    Get PDF
    Plants have the potential to accumulate toxic amounts of cadmium (Cd), and understanding how and where Cd is stored in plants is important for ensuring food safety. Previous experiments have determined that a greater amount of Cd is translocated into the leaves of lettuce (Lactuca sativa) as compared to barley leaves (Hordeum vulgare). Preferential retention of Cd in root of barley would explain this difference. Hence, the purpose of this study was to determine the localization and coordination environment of Cd (i.e., the ligands to which Cd was bound) in the different root tissues of lettuce and barley using histochemical staining, electron microscopy and micro X-ray spectroscopy. Retention of Cd in barley roots could be explained by accumulation of Cd at the endodermis, comparatively higher amounts of Cd sequestered in the symplast of cortical cells and binding to xylem cell walls. Increased translocation of Cd to lettuce shoots seemed to be due to a less effective barrier at the endodermis and less sequestration of Cd in the cortex. Regardless of the tissue type, most of the Cd2+ was bound to S ligands in the roots of barley, possibly reflecting accumulation of Cd–phytochelatin and Cd–S molecules in the vacuoles. In lettuce roots, Cd was more evenly distributed among ligands containing S, O and NO3 groups, which is indicative of proportionately more Cd binding to the cell walls, relative to barley. These results will be useful in uncovering the mechanisms of differential Cd-tolerance and sequestration in lettuce and barley

    Possible Radiation-Induced Damage to the Molecular Structure of Wooden Artifacts Due to Micro-Computed Tomography, Handheld X-Ray Fluorescence, and X-Ray Photoelectron Spectroscopic Techniques

    Get PDF
    This study was undertaken to ascertain whether radiation produced by X-ray photoelectron spectroscopy (XPS), micro-computed tomography (μCT) and/or portable handheld X-ray fluorescence (XRF) equipment might damage wood artifacts during analysis. Changes at the molecular level were monitored by Fourier transform infrared (FTIR) analysis. No significant changes in FTIR spectra were observed as a result of μCT or handheld XRF analysis. No substantial changes in the collected FTIR spectra were observed when XPS analytical times on the order of minutes were used. However, XPS analysis collected over tens of hours did produce significant changes in the FTIR spectra

    Reduced Translocation of Cadmium from Roots Is Associated with Increased Production of Phytochelatins and Their Precursors

    Get PDF
    Cadmium (Cd) is a non-essential trace element and its environmental concentrations are approaching toxic levels, especially in some agricultural soils. Understanding how and where Cd is stored in plants is important for ensuring food safety. In this study, we examined two plant species that differ in the distribution of Cd among roots and leaves. Lettuce and barley were grown in nutrient solution under two conditions: chronic (4 weeks) exposure to a low, environmentally relevant concentration (1.0 μM) of Cd and acute (1 h) exposure to a high concentration (5.0 mM) of Cd. Seedlings grown in solution containing 1.0 μM CdCl2 did not show symptoms of toxicity and, at this concentration, 77% of the total Cd was translocated to leaves of lettuce, whereas only 24% of the total Cd was translocated to barley leaves. We tested the hypothesis that differential accumulation of Cd in roots and leaves is related to differential concentrations of phytochelatins (PCs), and its precursor peptides. The amounts of PCs and their precursor peptides in the roots and shoots were measured using HPLC. Each of PC2–4 was synthesized in the barley root upon chronic exposure to Cd and did not increase further upon acute exposure. In the case of lettuce, no PCs were detected in the root given either Cd treatment. The high amounts of PCs produced in barley root could have contributed to preferential retention of Cd in barley roots
    corecore