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Summary 

Cadmium (Cd) is a non-essential trace element and its environmental concentrations are 

approaching toxic levels, especially in some agricultural soils. Understanding how and where Cd 

is stored in plants is important for ensuring food safety. In this study, we examined two plant 

species that differ in the distribution of Cd among roots and leaves. Lettuce and barley were 

grown in nutrient solution under two conditions: chronic (4 week) exposure to a low, 

environmentally relevant concentration (1.0 µM) of Cd and acute (1 h) exposure to a high 

concentration (5.0 mM) of Cd. Seedlings grown in solution containing 1.0 µM CdCl2 did not 

show symptoms of toxicity and, at this concentration, 77% of the total Cd was translocated to 

leaves of lettuce, whereas only 24% of the total Cd was translocated to barley leaves. We tested 

the hypothesis that differential accumulation of Cd in roots and leaves is related to differential 

concentrations of phytochelatins (PCs), and its precursor peptides. The amounts of PCs and their 

precursor peptides in the roots and shoots were measured using HPLC. Each of PC2-4 was 

synthesized in the barley root upon chronic exposure to Cd and did not increase further upon 

acute exposure. In the case of lettuce, no PCs were detected in the root given either Cd treatment. 

The high amounts of PCs produced in barley root could have contributed to preferential retention 

of Cd in barley roots. 

Keywords: Cadmium; Hordeum vulgare; Lactuca sativa; Phytochelatin; Translocation 
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Introduction 

Phytochelatins (PCs) are enzymatically synthesized peptides in plants that usually consist of 

three amino acids: glutamic acid (Glu), cysteine (Cys) and glycine (Gly) (Kondo et al., 1984; 

Grill et al., 1985). The resultant glutathione (GSH) molecule (γ-Glu-Cys)-Gly is transformed into 

PC by γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase, EC 2.3.2.15), 

forming the general structural formula of (γ-Glu-Cys)n-Gly, where n ranges from 2-11 (Grill et 

al., 1985; 1987; 1989). The carboxyl-terminal Gly is replaced with serine (Ser) in gramineae 

hydroxymethyl PCs (Klapheck et al., 1994), β-alanine (β-Ala) in legume homo PCs (Grill et al., 

1986), or can either be absent or replaced with Glu in maize (Zea mays, Meuwly et al., 1995). 

Phytochelatins are functionally analogous to metallothioneins (MTs), which are produced by 

animals and some fungi and have been identified in plants ranging from algae to monocots and 

dicots (Grill et al., 1987).  

A number of metal ions are reported to be involved with activation of PC synthase in plants. 

These include the cations antimony (Sb5+), bismuth (Bi3+), cadmium (Cd2+), copper (Cu2+), gold 

(Au+), lead (Pb2+), mercury (Hg2+), nickel (Ni2+), silver (Ag+), tin (Sn2+) and zinc (Zn2+) and the 

anions arsenate (AsO4
3-) and selenite (SeO3

2-) (Grill et al., 1987; 1988). Among these, the 

strongest activation of the enzyme was observed with Cd2+. The activity of PC synthase is self-

regulated in that the product of the reaction (PC) chelates the enzyme-activating metal, thus 

terminating the enzyme reaction. Once PCs form complexes with metals they will either store the 

metal in metabolically inactive sites inside the cell (Salt and Rauser, 1995) or release them to 

apoenzymes, which require these metal ions as cofactors to perform their catalytic activity (Grill 
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et al., 1988). Phytochelatins are thus not only involved in metal detoxification, but also metal 

homeostasis in plants.  

Both PCs and their peptide precursors have a high affinity for metal cations because of the thiol 

(-SH) groups on the cysteine residues. A number of analytical techniques have been used for the 

identification and structural analysis of these metal-chelate complexes (Leopold and Günther, 

1997; Scarano and Morelli, 2002; El-Zohri et al., 2005; Chekmeneva et al., 2007; 2008; 2011). 

In general, the interaction is governed by the binding affinity of thiol groups for metal ions 

(Chekmeneva et al., 2007; 2008) as well as the availability and complexing capacity of the 

ligands (Díaz-Cruz et al., 1997; 1998; Cruz et al., 2002; Kobayashi and Yoshimura, 2006; 

Chekmeneva et al., 2007; 2008).  

The binding stoichiometry of the metal-PCn complexes has also been studied (Díaz-Cruz et al., 

1997; 1998; Kobayashi and Yoshimura, 2006; Chen et al., 2007; Chekmeneva et al., 2007; 2008; 

2011). It was found that an increase in the number of thiol groups in a molecule produces an 

increase in the binding capacity, i.e. the number of metal ions that can be bound to a PCn 

molecule (Chekmeneva et al., 2011). Chen et al. (2007) studied Cd2+-PCn complexes from a Cd 

hyperaccumulator, Brassica chinensis, and reported the binding stoichiometries as 1:1 to 3:1 

based on the availability of Cd2+ and thiol groups in the Cd2+-PCn complexes in the cytosol.  

The ability of metal-PCn complexes to sequester metals in metabolically inactive sites depends 

on the stability of the complex. Chekmeneva et al. (2007; 2008; 2011) measured stability 

constant values of Cd2+-PCn complexes using different techniques and concluded that the 

stability increases with higher chain lengths, up to PC3. Beyond PC3, the stability of the 
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complexes stays the same due to the fact that four or more thiol groups can saturate the 

coordination number of Cd2+, which is usually tetrahedral.  

Previous studies have reported Cd-induced PC synthesis (Grill et al., 1985; Ranieri et al., 2005; 

Wang and Wang, 2011) and identified Cd2+-PCn complexes either under laboratory conditions 

(Kobayashi and Yoshimura, 2006; Chekmeneva et al., 2007; 2008; 2011) or from plants in their 

native environment (Scarano and Morelli, 2002; Chen et al., 2007) as evidence for the proposed 

mechanism (Sanità di Toppi and Gabbrielli, 1999) involved in Cd detoxification in plants.  

In this study we measured the total amount of thiol-containing PCs and their precursors produced 

in the roots and shoots of lettuce and barley and used the binding stoichiometries of possible 

Cd2+-PCn complexes to estimate the theoretical efficiency of thiol-containing molecules in 

binding Cd2+ to understand the role of PCs and their precursors against differential Cd 

accumulation in barley and lettuce. The plant species were chosen because, in a previous 

experiment, lettuce and barley seedlings showed consistent differences in the proportions of the 

total Cd taken up in the plant that were translocated to the shoot. When grown in hydroponic 

nutrient solution containing 0.10 to 2.0 µM Cd, the proportions of Cd translocated to the shoots 

ranged from 19.0+0.2% to 25.2+4.9 % in barley and from 78.1+4.2% to 90.0+1.4% in lettuce 

(Akhter and Macfie, 2012). The mechanisms that control Cd translocation have not yet been 

determined. In lettuce and barley (Akhter and Macfie, 2012), rice (Oryza sativa, Uraguchi et al., 

2009) and maize (Florijn and Beusichem, 1993) increased translocation of Cd to the shoots in 

some plants could not be explained by greater volumes of water transpired. Uraguchi et al. 

(2009) measured higher concentrations of Cd in the xylem of rice with increased translocation of 

Cd but neither those plants nor varieties of durum wheat (Triticum turgidum var. durum, Adeniji 
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et al., 2010) with higher concentrations of Cd in the shoots took up more Cd from the growth 

medium than did the varieties with less Cd in the shoots. Increased translocation of Cd from the 

roots appears to be related to increased xylem loading and/or decreased retention of Cd in the 

roots.  Complexation of Cd2+ with PCn or their precursor complexes (Cys, Glu, and γ-Glu-Cys) 

in roots could contribute to reduced xylem loading and reduced translocation. Thus, the 

hypothesis that differential accumulation of Cd in roots and leaves of barley and lettuce is 

associated with differential concentrations of phytochelatin (PC2-4) and its precursor peptides 

was tested in this study.   

Materials and methods 

Chemicals 

Chemicals, stock solutions and reagents used were of analytical grade. Diethylenetriamine-

pentaacetic acid (DTPA), 4-(2-hydroxyethyl)-piperazine-1-propane sulfonic acid (HEPPS), N-

acetyl-L-cysteine (NAC), glutathione (GSH), γ-glutamylcysteine (γ-Glu-Cys or γ-EC), L-

cysteine (Cys), Tris(2-carboxyethyl)phosphine hydrochloride (TCEP), monobromobimane 

(MBrB), methanesulfonic acid (MSA), and trifluoroacetic acid (TFA) were obtained from 

Sigma-Aldrich (Oakville, ON, Canada);  hydrochloric acid (HCl) and acetonitrile (ACN) were 

obtained from Caledon (Georgetown, ON, Canada). Phytochelatin standards for PC2, PC3 and 

PC4, each with > 95% purity, were obtained from AnaSpec (Fremont, CA, USA), who used solid 

phase peptide synthesis to generate the PCs. Phytochelatins2-4 were chosen for analysis because 

they form the primary Cd2+-PCn complexes in plants (Scarano and Morelli, 2002; Chen et al., 

2007; Sadi et al., 2008). All solvents and ACN were filtered with a 0.45 µm filter (Type HA, 

Millipore Corporation, Etobicoke, ON, Canada). Water was purified by a Milli-Q system. All 
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glassware was washed in soapy tap water, rinsed in tap water, soaked in 10% (v/v) hydrochloric 

acid overnight, rinsed in deionized RO (reverse osmosis) water and air-dried before use.  

Germination and growth conditions 

Leaf lettuce (Lactuca sativa L. cv. Grand Rapids) and barley (Hordeum vulgare L. cv. CDC 

McGwire, hulless 2-row feed barley) seeds were placed on moist (RO water) filter paper in Petri 

dishes and placed in the dark at room temperature. When the radicles were approximately 1 cm 

long (24 - 36 h), seedlings were transferred to sand-filled pots and watered with nutrient solution 

adjusted to pH 6.0. The nutrient solution contained 1.0 mM Ca(NO3)2·4H2O, 1.0 mM K2HPO4, 

0.4 mM KNO3, 0.3 mM Mg(NO3)2·6H2O, 0.3 mM NH4NO3, 0.1 mM K2SO4, 10.0 µM 

FeCl3·6H2O, 10.0 µM Na2EDTA, 6.0 µM H3BO3, 2.0 µM MnCl2·4H2O, 0.50 µM ZnSO4·7H2O, 

0.15 µM CuSO4·5H2O and 0.10 µM  Na2MoO4. 

Potted seedlings were kept in a growth chamber set to 21ºC, 60% relative humidity, and a 16 h 

day length. The light intensity was 187±1.5 μmol m-2 s-1. The seedlings were transferred to 1.4 L 

glass jars after 1 week in sand culture. Two seedlings were secured in the lid of a jar with a 0.5 × 

1 × 6 cm piece of foam, and each jar was covered with black cloth to prevent algal growth. The 

jars were filled with nutrient solution to which either 0 (n=3) or 1.0 μM CdCl2·5H2O (hereafter 

referred to as CdCl2, n=6) was added, and the pH was adjusted to 6.0 using concentrated HCl. 

Each jar was connected to an aeration system and the plants were provided with fresh nutrient 

solution (including the corresponding Cd treatment) every second day. On the 28th day in 

hydroponic culture, seedlings from three of the 1.0 μM CdCl2 treatments were moved into new 

jars of aerated nutrient solution with 5.0 mM CdCl2 (pH 6.0) for 1 h. At harvest, the roots were 
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separated from the shoots from one plant in each jar, rinsed in RO water and oven dried (60ºC) to 

constant weight and stored for Cd analysis. The Cd measured in these roots represented the total 

amount accumulated. The Cd in the apoplast of the roots from the other plant was desorbed using 

CaCl2 (Buckley et al., 2010, with some modifications). Specifically, the roots were rinsed in RO 

water and transferred to 900 mL of 5.0 mM CaCl2 at 0°C (ice water bath) for 30 min. After 30 

min of desorption, the roots were separated from the shoots, rinsed in RO water and oven dried 

(60ºC) to constant weight and stored for Cd analysis. The amount of Cd in these tissues 

represented the amount in the symplast. Control seedlings were treated with the same procedure 

except that RO water was used instead of CaCl2. The amount of Cd in the apoplast was 

calculated as apoplastic Cd = total Cd - symplastic Cd. As a control check, the concentration of 

Cd in the CaCl2 wash was also measured.  

In another experiment, a separate batch of seedlings was grown following the same procedures 

mentioned above except that individual seedlings were transferred to glass jars. At harvest, fresh 

weights of roots and shoots were recorded and a 1.0 g subsample of each tissue type was flash 

frozen in liquid nitrogen and stored at -80ºC for PC analysis. The remainder of the root and shoot 

samples were oven dried (60ºC) to constant weight and stored for Cd analysis.  

Extraction of thiol-containing molecules 

Thiol-containing compounds were extracted following the method of Sneller et al. (2000) with 

some modifications. Frozen (-80ºC) root and shoot samples were ground in liquid nitrogen (N2) 

using a mortar and pestle, and 0.10 g of each sample was immediately placed in an individual 

microcentrifuge tube containing 1.5 mL of 6.3 mM DTPA with 0.1% (v/v) TFA and 25 µL of 20 

mM TCEP (4ºC). The mixture was sonicated in ice water (Cole-Parmer ultrasonic system, model 
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no. 8893-21, Montreal, QC, Canada) for 25 min and the supernatant was collected after 

centrifugation at 15000×g for 60 min at 4ºC. The thiol groups were derivatized (see section 

Derivatization of thiol groups) immediately and analyzed using HPLC (see section HPLC 

instrumentation and chromatographic conditions). The unused portion of each sample was 

returned to the -80ºC freezer.  

Preparation of thiol-containing standards  

Standards and reactant solutions were prepared according to the procedure described in Minocha 

et al. (2008) with some modifications. Stock solutions of 1 mM of each thiol-containing standard 

(Cys, Glu, γ-Glu-Cys, PC2, PC3, PC4 and NAC [N-acetyl-cysteine], an internal standard), were 

prepared using deionised water (RO water) and stored in the dark at -20ºC. The internal standard 

was necessary because duplicate measurements of each standard had peak areas that varied by up 

to 3%. Adjusting the NAC value for each standard and experimental sample to a pre-determined 

value ensured that this instrument variability did not affect quantification of thiol-containing 

molecules. The pre-determined value was equal to the average NAC peak area obtained for three 

independent NAC samples.  

The concentrations used to prepare standard curves and establish detection limits ranged from 0 

to 200 µM for Cys, γ-Glu-Cys, GSH, PC2, and PC3 and 0 to 100 µM for PC4. At concentrations 

higher than 100 µM, the chromatographic peaks for PC4 were off-scale. To make the series of 

standards, the stock solutions were diluted with 6.3 mM DTPA with 0.1% v/v TFA (extraction 

buffer). Thiol-containing standards were prepared fresh on the day of use, derivatized 

immediately (see section Derivatization of thiol groups) and analyzed using HPLC (see section 

HPLC instrumentation and chromatographic conditions). Thiol-containing molecules were 
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quantified using five-point calibration curves (Table 1). The slope for PC2 was lower than 

expected.  Repeated preparation of this component resulted in consistently low slope values, 

which indicates that the molecule may have degraded (oxidized). If this was the case, then the 

calculated concentrations of PC2 in our experimental samples might be slightly higher than the 

actual values; however, the relative amounts of PC2 among our experimental treatments would 

be unaffected. A standard mixture containing monothiols (Cys, γ-EC and GSH), NAC and 

polythiols (PC2, PC3 and PC4) was also run.  

Derivatization of thiol groups 

The thiol-containing compounds were derivatizated with MBrB following the procedures of 

Rijstenbil and Wijnholds (1996) and Sneller et al. (2000), as described in Minocha et al. (2008).  

HEPPS buffer (200 mM) was prepared in 6.3 mM DTPA set to pH 8.2. Then, 615 µL of this 

solution was mixed with 25 µL of 20 mM TCEP solution, which was prepared fresh each day of 

use in 1M HEPPS buffer and used as a reducing agent in the reaction mixture. To this mixture, 

samples or standards (250 µL) as well as NAC (10 µL of 0.5 mM) were added and the mixture 

was pre-incubated at 45ºC. After 10 min, MBrB was added (10 µL of 50 mM MBrB, which was 

prepared in ACN and kept in the dark at 4ºC until use) to the mixture and the tube was placed the 

dark at 45ºC for an additional 30 min. The reaction was terminated by adding 100 µL of 1M 

MSA. The solution was filtered (0.2 µm) before HPLC analysis.  

HPLC instrumentation and chromatographic conditions 

The HPLC instrument used was an Agilent Technologies 1200 series system with the following 

components: G1311A quaternary pump, G1322A degasser, G1367B auto sampler, G1330B 
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FC/ALS Therm, G1315D diode array detector (DAD), G1321B fluorescence detector (FLD), and 

Chemstation software. The column used was a C30, YMC-CarotenidTM column with 3 µm 

particle size (4.6 m × 250 mm, Waters). The injection volume was 50 µL. The excitation and 

emission wavelengths were set at 390 and 490 nm, respectively. Thiol-containing molecules 

were separated by using two solvents: (A) 0.1% TFA in RO water and (B) ACN. The details of 

the gradient profile are given in Table 2. Total runtime for each sample was 60 min including 

column cleaning. The flow rate was set at 1 mL min-1 throughout the runtime. The detection limit 

(3× average noise level) was calculated from the lowest concentration of each standard visible in 

the chromatogram (Table 1). Finally, data were integrated using Chemstation software. 

Estimation of Cd2+-thiol-complexation 

We estimated the capacity for thiol-containing molecules to bind Cd2+ ions in the samples. This 

was done based on the measured amounts of Cd2+, PCs and PC-precursors as well as the 

expected ratios of Cd2+ and PCs in the potential Cd2+-PCn complexes. The ratios used were 1:1 

for Cd2+-Cys, Cd2+-(γ-Glu-Cys) and Cd2+-GSH, 2:1 for Cd2+-PC2 and 3:1 for Cd2+-PC3-4 (Chen et 

al., 2007; Chekmeneva et al., 2011).     

Cadmium content  

Root and shoot samples were acid-digested using a modified EPA test method SW-846 (US EPA 

2005). Dried samples were hand-chopped then ground using a mortar and pestle. Each 0.10 g 

subsample was  placed in a 15 mL glass test tube with 1 mL pure nitric acid (OmniTrace®, EM 

Science, USA) covered with a glass marble, which  prevented evaporation yet allowed pressure 

to be released. The efficiency of the acid-digestion procedure was assessed by similarly 
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processing a standard reference material (SRM) from the National Institute of Standards and 

Technology (NIST 1573a, tomato leaves) and possible Cd contamination was assessed by 

processing reagent blanks. Samples were digested overnight at room temperature. The following 

day, samples were heated to 90-100ºC on a hot plate until the vapours became transparent. After 

cooling to room temperature, samples were filtered (VWR, qualitative grade 413) then brought 

to 50 mL with RO water. The samples were analyzed for Cd content by inductively-coupled 

plasma atomic emission spectrometry (ICP-AES) using the following conditions: Perkin-Elmer 

Optima 3300 Dual view ICP-AES; RF generator power, 1300 Watts; plasma flow rate, 15 L min-

1; auxiliary flow rate, 0.5 L min-1; nebulizer flow rate, 0.8 L min-1; pump flow rate, 1.0 L min-1; 

analyte line, Cd 226.507 nm; plasma view, axial. The detection limit (3× average noise level) 

was 0.001 ppm for Cd. The percentage recovery of Cd in the digested SRM was 74±8% and no 

Cd was detected in the reagent blanks. 

Statistical analysis 

One-way ANOVA followed by Tukey tests were used to detect significant (p<0.05) effects of 

Cd treatment on Cd content and thiol compound content in the shoot and root tissues and for 

differences between apoplast and symplast Cd content. The coefficient of determination (R2) was 

calculated and used to assess the precision of each standard curve for the thiol compounds. 

Graphics and statistical analyses were done in SigmaPlot (version 11.0). 
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Results 

Cadmium content 

Plants grown in control solution did not contain measureable amounts of Cd, except for roots of 

barley in which Cd was just above the detection limit (Table 3). Low concentrations (0.09 to 

0.33 mg g-1) and amounts (0.07 to 0.45 mg) of Cd were measured in shoots and roots of barley 

and lettuce from the 1.0 µM CdCl2 treatment, with roots having 1.5- to 2-fold higher 

concentrations than shoots. When plants were exposed to 5.0 mM CdCl2 for 1 h prior to harvest, 

concentrations of Cd in shoots increased by 50% in barley and 25% in lettuce, while 

concentrations of Cd in roots increased 5-fold in barley and 50-fold in lettuce, compared to 

plants from the 1.0 µM CdCl2 treatments. The patterns were similar for the total amount of Cd 

(amount = Cd concentration × biomass); amounts of Cd increased in response to the 5.0 mM 

CdCl2 treatment and roots contained higher concentrations of Cd than did shoots. 

The two species differed in their relative translocation of Cd to shoots. In the 1.0 µM CdCl2 

treatment (Table 3), barley stored 76% of total Cd in the root and translocated only 24% to the 

shoot; in contrast, lettuce stored only 23% of the total Cd in the root and translocated the rest to 

the shoot. Regardless of the species, plants stored ~ 90% of the total Cd in the root when exposed 

to 5.0 mM CdCl2 for 1 h; however, at the end of this treatment barley plants appeared healthy 

and stood straight whereas lettuce plants lost vigour and wilted.   

Apoplastic and symplastic Cd 

After desorption of Cd from the apoplast, the concentrations of Cd remaining in plants grown 

with a chronic, low concentration of Cd were below the detection limit of the ICP-AES (data not 
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shown), thus plants given the acute exposure to 5.0 mM CdCl2 were used to estimate the 

distribution of Cd within the roots. Because proportionally more Cd might be expected to be in 

the apoplast of plants given an acute exposure to a very high concentration of Cd, the amounts of 

symplastic Cd for the plants from the 1.0 µM CdCl2 treatment in Table 5 are likely to be 

underestimates. Concentrations of Cd were higher in lettuce roots compared to barley roots (Fig. 

1a). In lettuce, the Cd concentration was 2-fold higher in the apoplast compared to symplast, 

whereas no difference was detected in barley (Fig. 1a). When the total amount of Cd in each root 

compartment was calculated, there were no differences in total Cd accumulation between the 

species (Fig. 1b), each accumulated about 0.5 mg Cd. In barley, Cd was evenly distributed 

between the apoplast and symplast whereas lettuce stored only 35% of the total root Cd in the 

symplast and the rest was bound within the apoplast (Fig. 1b). 

HPLC profile of thiol-containing compounds 

The C30 column used in this study improved the resolution of peaks compared to other MBrB-

based derivatization methods that used a C18 column (e.g., Minocha et al., 2008; Thangavel et al., 

2007). Identification of the components was confirmed by spiking the reaction blank and 

standard mixture with individual components, one at a time. A very broad reagent peak was 

observed in the chromatograms at approximately 28 min. This peak was also observed in other 

MBrB-based derivatization studies (e.g., Thangavel et al., 2007; Minocha et al., 2008). 

Kawakami et al. (2006) identified this peak as tetramethylbimane (Me4B) and reported that this 

compound was used during the synthesis of MBrB.  

Monothiols and PCs in plant tissues 
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The total amount of each monothiol and PC in the shoot and root tissues was calculated by 

multiplying the concentration of each thiol-containing compound by the corresponding tissue 

mass (Table 4, with trends summarized in Fig. 2). In barley shoots, the amounts of Cys, GSH and 

PC4 were lowest in plants exposed to 1.0 µM CdCl2 for 4 weeks. When the same plants were 

exposed to 5.0 mM CdCl2 for 1 h prior to harvest, the amounts of Cys, GSH and PC4 returned to 

control values. For all treatments, the total amount of PC4 in the shoots was very low. Cadmium 

treatment did not affect the amounts of γ-EC in the shoots. Each of PC2 and PC3 were below the 

detection limit in barley shoots.  

In barley roots grown in control solution, all monothiols (except GSH) and PCs were below the 

detection limit (Table 4, with trends summarized in Fig. 2). The amounts of GSH in barley did 

not vary with Cd treatment but each of Cys, γ-EC, PC2, PC3 and PC4 increased in response to Cd. 

The amounts were the same for plants in the 1.0 µM CdCl2 treatment and the 5.0 mM CdCl2 

treatment, except for Cys. Plants synthesized five times more Cys when exposed to 5.0 mM 

CdCl2 for 1 h prior to harvest. 

Lettuce shoots contained high amounts of Cys and GSH when grown in control solution and, as 

in barley, the amounts were lower in plants from the 1.0 µM CdCl2 treatment (Table 4, with 

trends summarized in Fig. 2). However, unlike in barley, the amounts of Cys and GSH did not 

return to control values after the acute 5.0 mM CdCl2 treatment. Similar to barley, the amounts 

of γ-EC, PC2 and PC3 were below detection limit and a very low amount of PC4 was measured in 

lettuce shoots.  

Only Cys and GSH were detected in roots of lettuce (Table 4, with trends summarized in Fig. 2). 

There were no effects of Cd treatment on Cys production. GSH was reduced in plants in the 1.0 
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µM CdCl2 treatment compared to the control plants and returned to the control value after the 5.0 

mM CdCl2 treatment (Table 4).  

The total amount of thiol-containing compounds in control plants was higher in barley (29.9+4.8 

µmol) than in lettuce (17.7+2.1 µmol); barley contained higher amounts of γ-EC and GSH but 

lower amounts of Cys relative to lettuce (Table 4). Phytochelatins were below detection limit in 

lettuce root, whereas barley root synthesized PCs upon Cd exposure. It thus appears that barley 

was more efficient in synthesizing thiol-containing molecules compared to lettuce. 

Estimating the formation of Cd2+-thiol complexes 

Phytochelatins are synthesized in the root symplast and can bind Cd2+ in this compartment only. 

Based on the results of the apoplast-symplast study (Fig. 1), the total number of moles of Cd in 

the root and the moles of Cd theoretically present in the symplast of barley and lettuce root were 

calculated (Table 5). We then calculated the maximum number of moles of Cd2+ that could 

theoretically be chelated by the PCs as well as the monothiols that were measured in the barley 

and lettuce roots (using data from Table 4). The ability of thiol groups to bind Cd2+ was 

calculated based on published information on the binding stoichiometry of Cd2+- PCn complexes 

(Cruz et al., 2002; Chekmeneva et al. 2007; 2008; 2011). We assumed that all of the Cd 

estimated to be in the symplast was available to interact with all of the thiol groups and that no 

other types of molecules formed a complex with Cd. While this is no doubt an overestimate of 

the actual amount of Cd2+-available for complexation, it provides an estimate of the maximum 

potential for Cd2+ to form complexes with PCs and their precursors. We determined that PCs had 

the potential to chelate as much as 100% of the symplastic Cd2+ in barley roots exposed to 1.0 

µM CdCl2 for 28 days (Table 5). When the same plants were exposed to 5.0 mM CdCl2 for 1 h 
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prior to harvest, thiol-containing compounds could form complexes with only 46% of the total 

amount of symplastic Cd2+. When monothiols were included as potential Cd2+ chelators, 100% 

(1.0 µM CdCl2) and 85% (5.0 mM CdCl2) of the symplastic Cd2+ could have been chelated with 

thiol-containing molecules. In the case of lettuce, no PCs were detected under experimental 

conditions and only monothiols were present (Table 5). At 1.0 µM CdCl2, these monothiols could 

theoretically form complexes with 100% of the total symplast Cd2+ in the lettuce root. For the 

lettuce exposed to 5.0 mM CdCl2 for 1 h, synthesis of monothiols was unchanged and the 

efficiency of complexation with Cd2+ dropped to 5%.  

Discussion 

The potential role of PC2-4 and their precursor peptides in differential Cd accumulation in lettuce 

and barley was tested in the present study by growing plants under two conditions: chronic (28 d) 

exposure to a low, environmentally relevant concentration (1.0 µM) of Cd and acute (1 h) 

exposure to a high concentration (5.0 mM) of Cd. Chronic exposure was used to evaluate the 

‘steady state’ status of the various peptides under mild Cd stress; acute exposure was used to 

evaluate the initial response to potential Cd toxicity. 

Differential Cd accumulation 

The distribution of Cd differs between lettuce and barley. When grown with a chronic, low 

concentration of Cd only 24% of the total Cd taken up by lettuce was retained in the root, 

whereas 76% of the total Cd in barley was retained in the root. This confirms our previous report 

of differential translocation of Cd in these two species (Akhter and Macfie, 2012). When plants 

were exposed to a very high concentration of Cd for 1 h, over 90% of the total Cd was found in 

the root for both species, likely reflecting lack of time for the Cd to be translocated to the shoot.  
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The species also differed in the localization of Cd within the root. Approximately two thirds of 

the total Cd taken up by lettuce roots from the acute Cd treatment was in the loosely bound 

(apoplast) fraction. In contrast, Cd in barley roots was evenly distributed between the apoplast 

and symplast. Thus, these species provide a good system in which to examine the role of metal-

binding molecules in differential translocation of Cd. 

Phytochelatins  

The synthesis of PCs in response to Cd has been reported in a number of studies conducted on 

various species including a marine diatom (Thalassiosira nordenskioeldii, Wang and Wang, 

2011), freshwater green alga (Scenedesmus vacuolatus, Le Faucheur et al., 2005), tobacco cell 

culture (Nicotiana tabacum, Zitka et al., 2011), bread wheat (Triticum aestivum, Ranieri et al., 

2005), rice (Nocito et al., 2011) and broad bean (Vicia faba, Čabala et al., 2011). The fact that no 

PCs were detected in the roots of lettuce grown in either Cd treatment indicates that PCs were 

not involved in Cd2+chelation and accumulation in lettuce root. In contrast to our results, Maier 

et al. (2003) reported PCs in concentrations of ~0.10 µmol g-1 fresh weight in roots of romaine 

lettuce (L. sativa var longifolia) upon exposure to 25 nM CdCl2. It is possible that PCs in our 

samples degraded during sample preparation; we extracted PCs from frozen tissue (liquid 

nitrogen followed by storage at -80°C) rather than immediately harvested tissue, and Maier et al. 

(2003) showed that up to 50% of the PCs can be lost during freezing. 

Most of the Cd taken up by lettuce was translocated to the shoot. However, low amounts (< 0.3 

µmol) of only one PC, PC4, were detected in lettuce shoots making it unlikely that PCs were a 

major contributor to Cd2+ detoxification in the shoot either. Maier et al. (2003) also reported low 
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concentrations of total PCs in romaine lettuce shoots (~0.02 to 0.25 µmol g-1 fresh weight) 

exposed to Cd. The PCs in control plants may have been produced in response to the Zn2+and 

Cu2+ in the nutrient solution. Along with Cd2+, these metal ions can also induce the synthesis of 

PCs (Grill et al., 1987). The amounts of PCs synthesized in response to nutrient cations are 

expected to be low but it was surprising that we detected only PC4 in plants from control and 

CdCl2 treatments. We expect that PC2 was also present in lettuce leaves but was below detection 

limit. Under our conditions, the detection limit for PC2 was 10-fold higher than for PC4 and, 

since PC4 has three thiol groups and PC2 has only one, PC4 is more easily detected when using 

MBrB derivatization. Maier et al. (2003) also reported PCs (~0.02 µmol g-1 fresh weight) in roots 

of romaine lettuce grown in control (Cd-free) solution. However, they reported the 

concentrations in terms of γ-Glu-Cys equivalents; thus, the type of PC in their lettuce was not 

identified. 

In contrast to lettuce, PC2-4 were synthesized in the barley root upon chronic exposure to 1.0 µM 

CdCl2, with the relative amounts of PC2 being 1-2 orders of magnitude higher than those of PC3 

and PC4. Similarly, Wang and Wang (2011) found that PC2 was synthesized quickly as a 

response to Cd exposure in marine diatom Thalassiosira nordenskioeldii and it was six times 

higher than PC3 and PC4. Sadi et al. (2008) studied Cd2+-PCn complexes in Arabidopsis thaliana 

and reported Cd2+-PC2 as the primary complex in wild as well as in genetically modified PC-

deficient mutant lines. We believe that the high amounts of PCs produced in barley root could 

have contributed to reduced translocation of Cd to barley shoots relative to lettuce shoots, which 

in turn could explain why barley leaves appeared healthy after 1 h exposure to 5.0 mM CdCl2 

whereas lettuce leaves were visibly negatively affected. Persson et al. (2006) demonstrated the 
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biological importance of Cd2+-PCn complexation for tolerance towards Cd using two genotypes 

of barley. They showed that although the total tissue concentration of Cd was similar for both 

genotypes, the tolerant genotype synthesized significantly more Cd2+-PCn complexes than the 

intolerant genotype. Since it is assumed that Cd2+-PCn complexes transport Cd to the root 

vacuole (Sanità di Toppi and Gabbrielli, 1999) their formation would reduce the amounts of Cd 

available for translocation to aboveground tissues. 

The amounts of PCs in barley did not increase further upon exposure to 5.0 mM CdCl2 for 1 h 

prior to harvest. This could be explained by the substrate availability required for PC synthesis. 

When plants are exposed to Cd, protein degradation provides the amino acids necessary for PC 

synthesis (Wu et al., 2004). It is possible that the amino acid pool remained unchanged during 

the short, 1 h treatment, thus preventing increased production of PCs. 

Precursor peptides 

Since Cys, γ-EC and GSH are precursors of PC biosynthesis, their amounts are expected to drop 

(even if only temporarily) upon acute  exposure to Cd2+, and might be expected to increase or 

return to control values under chronic exposure to Cd2+ if they are required to supply ongoing 

synthesis of PCs. In our study, the amounts of γ-EC were either low or below detection limit in 

all samples and the relative amounts of Cys and GSH varied with both species and tissue type. 

Roots of both species contained about an order of magnitude less Cys as compared to shoots and 

there was no consistent response to either chronic or acute exposure to Cd. In general, the 

amount of GSH was reduced in plants grown with chronic exposure to Cd. A number of other 

studies also reported reduced GSH level upon days or weeks of exposure to Cd (Scheller et al., 

1987; Tukendorf and Rauser, 1990; Lima et al., 2006). However, like PCs, the amounts of GSH 
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returned to control levels in plants given the acute 5.0 mM CdCl2 treatment, indicating that GSH 

synthesis was rapidly up-regulated, possibly to meet the requirement for PC synthesis or to 

combat Cd-induced stress. The exception to this was in the lettuce shoots, where the amount of 

GSH stayed low upon acute exposure to Cd. Other than its role in PC synthesis, GSH is also 

known to form complexes with Cd2+. Dameron et al. (1989) isolated GSH-coated CdS 

crystallites in Candida glabrata providing direct evidence of biologically formed Cd2+-GSH 

complexes. Recently Chekmeneva et al. (2011) used isothermal titration calorimetry (ITC) to 

understand the influence of PC chain length on the Cd2+-PCn complex stabilities and showed that 

GSH can form stable Cd2+-GSH complexes at pH 7.5 and 8.5. However, since Cd2+-PCn 

complexes are more stable than Cd2+- GSH complexes, it is likely that GSH will play a minor 

role in detoxifying Cd2+ compared to PCs. It has been suggested that GSH might act as a first 

line of defense against Cd2+ toxicity by complexing metal ions before sufficient PCs are 

synthesized (Thangavel et al., 2007). Once PCs take over the detoxification process, GSH gets 

involved in a secondary defense mechanism by scavenging free radicals in Cd2+-induced 

oxidative stress (Gallego et al., 2005; Ranieri et al., 2005). Thus, GSH is not only a precursor for 

PC synthesis (Grill et al., 1989) but also an important antioxidant in plants. In the present study, 

the amount of GSH was always higher in barley, probably contributing to higher chelation of 

Cd2+ compared to lettuce. 

Cd2+-PCn complex formation 

Higher concentrations and amounts of PCs and their precursors in barley root compared to 

lettuce root indicate that the formation of Cd2+-peptide complexes probably contributes to the 

observed retention of Cd in barley roots. While our calculations of symplastic Cd2+ might be 
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overestimates (due to chelation of Cd2+ with other molecules), and some of the PCs in our 

samples may have degraded, we determined there were sufficient PCs in the roots of barley from 

the chronic 1.0 µM CdCl2 treatment to bind 100% of the putative symplastic Cd2+.  If the 

amounts of Cd2+ in the symplast were actually lower than we estimated and if the amounts of 

PCs were actually higher than we measured, then Cd2+-PCn complexes could effectively 

eliminate free Cd2+ in the symplast. In barley roots from the acute 5.0 mM CdCl2 treatment, PCs 

could, in theory, form complexes with only 46% of the symplastic Cd2+ but if Cd2+ also formed 

complexes with monothiols then only 15% of the symplastic Cd2+ would be predicted to be free 

ions. In the case of lettuce, PCs were not synthesized but 100% of the total symplastic Cd could 

theoretically form complexes with the monothiols produced in the roots upon exposure to 1.0 

µM CdCl2. The estimated proportion of chelated Cd2+ drops to 5% in lettuce roots from the 5.0 

mM CdCl2 treatment. However, we do not expect Cd2+-monothiol formation to be as efficient as 

our estimates indicate and the lack of PCs in lettuce roots could explain the higher proportion of 

total Cd that is translocated to lettuce leaves. 

If Sanità di Toppi and Gabbrielli’s (1999) model is correct, after Cd2+ is released from a PC 

complex in the vacuole, the PCs could either be degraded by vacuolar hydrolysis or could return 

back to the cytoplasm. These apo-PCs could serve as a shuttle, bringing more Cd2+ into the 

vacuole. This shuttling process could continue until all the free Cd2+ are moved into the vacuole. 

Based on our estimates, each PC produced in barley roots exposed to the acute, high 

concentration of Cd would have to carry only 4 Cd2+ ions into the vacuole to sequester the 

amount of Cd estimated in the root symplast. Previously, the role of PCs was thought to be 

limited to the intracellular detoxification mechanism by shuttling Cd2+-PCn complexes into the 

vacuole. However, recent studies on Brassica napus (Mendoza- Cózatl et al., 2008) and 
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Arabidopsis thaliana (Gong et al., 2003; Chen et al., 2006) showed that PCs could also play a 

major role in long-distance transport of Cd2+ through xylem and phloem. Mendoza- Cózatl et al. 

(2008)  found that the concentration of PCs was 50 times higher in the phloem sap compared to 

the xylem sap and concluded that phloem was more active in transporting Cd2+ from the source 

(older leaves) to the sink tissues (root, branches, younger leaves). This seems reasonable because 

the pH in phloem sap is basic compared to the xylem sap (Shelp, 1987) and would allow greater 

stability of Cd2+-PCn complexes. So, it is possible that Cd might be transported within the plant 

as Cd2+-thiol complexes rather than as free ions. In our study, more PCs as well as their 

precursors were measured in the shoots of barley compared to lettuce and it is possible that these 

PCs formed complexes with shoot Cd2+ and transported it downwards to the roots. This could be 

another reason for our observation that a greater proportion of the Cd in barley was found in the 

root whereas more of the Cd in lettuce was found in the shoot.  

Finally it can be said that there appears to be a relationship between PC synthesis in the root and 

Cd translocation to the shoot in barley and lettuce. Between the species, barley had higher 

concentrations and amounts of PCs and their precursors compared to lettuce and barley retained 

more Cd in the roots. However, until direct measures of sub-cellular Cd-distribution and Cd-

speciation are available it is difficult to definitively determine the role of PC and its precursors in 

binding Cd2+ in the roots. Further studies are needed to confirm the role of PCs and their 

precursors in answering the differences in Cd accumulation between barley and lettuce.   

Acknowledgements 

The research was financed by the Natural Sciences and Engineering Council of Canada 

Discovery Grant Program. The authors also gratefully acknowledge Bob Pocs for assistance with 



23 

 

HPLC.



24 

 

 

References 

Adeniji BA, Budimir-Hussey MT, Macfie SM. Production of organic acids and adsorption of Cd 

on roots of durum wheat (Triticum turgidum L. var. durum). Acta Physiol Plant 2010; 32: 

1063-72.  

Akhter MF, Macfie SM. Species-specific relationship between transpiration and cadmium 

translocation in lettuce, barley and radish. J Plant Stud 2012; 1: 2-13.  

Buckley WT, Buckley KE, Huang J. Root cadmium desorption methods and their evaluation 

with compartmental modeling. New Phytol 2010; 188: 280-90. 

Čabala R, Slováková L, El Zohri M,  Frank H. Accumulation and translocation of Cd metal and 

the Cd-induced production of glutathione and phytochelatins in Vicia faba L. Acta Physiol 

Plant 2011; 33: 1239-48.  

Chekmeneva E, Díaz-Cruz JM, Ariño C, Esteban M. Binding of Cd2+ and Zn2+ with the 

phytochelatin (γ-Glu-Cys)4-Gly: A voltammetric study assisted by multivariate curve 

resolution and electrospray ionization mass spectrometry. Electroanalysis 2007; 19: 310-17.  

Chekmeneva E, Prohens R, Díaz-Cruz JM, Ariño C, Esteban M. Thermodynamics of Cd2+ and 

Zn2+ binding by the phytochelatin (γ-Glu-Cys)4-Gly and its precursor glutathione. Anal 

Biochem 2008; 375: 82-9.  



25 

 

Chekmeneva E, Gusmão R, Díaz-Cruz JM, Ariño C, Esteban M. From cysteine to longer chain 

thiols: A thermodynamic analysis of cadmium binding by phytochelatins and their 

fragments. Metallomics 2011; 3: 838-46.  

Chen A, Komives EA, Schroeder JI. An improved grafting technique for mature Arabidopsis 

plants demonstrates long-distance shoot-to-root transport of phytochelatins in Arabidopsis. 

Plant Physiol 2006; 141: 108-20.  

Chen L, Guo Y, Yang L, Wang Q. SEC-ICP-MS and ESI-MS/MS for analyzing in vitro and in 

vivo Cd-phytochelatin complexes in a Cd-hyperaccumulator Brassica chinensis. J Anal At 

Spectrom 2007; 22: 1403-8.  

Cruz BH, Diaz-Cruz JM, Sestakova I, Velek J, Arino C, Esteban M. Differential pulse 

voltammetric study of the complexation of Cd (II) by the phytochelatin (γ-Glu-Cys ) 2-Gly 

assisted by multivariate curve resolution. J Electroanal Chem 2002; 520: 111-8. 

Dameron CT, Smith B R, Winges, DR. Glutathione-coated cadmium-sulfide crystallites in 

Candida glabrata. J Biol Chem 1989; 264: 17355-60. 

Díaz-Cruz MS, Mendieta J, Tauler R, Esteban M. Cadmium-binding properties of glutathione: A 

chemometrical analysis of voltammetric data. J Inorg Biochem 1997; 66: 29-36.  

Díaz-Cruz MS, Mendieta J, Monjonell A, Tauler R, Esteban M. Study of the zinc-binding 

properties of glutathione by differential pulse polarography and multivariate curve 

resolution. J Inorg Biochem 1998; 70: 91-8. 



26 

 

El-Zohri MHA, Čabala R, Frank H. Quantification of phytochelatins in plants by reversed-phase 

HPLC-ESI-MS-MS. Anal Bioanal Chem 2005; 382: 1871-6.  

Florijn PJ, Beusichem MLV.Uptake and distribution of cadmium in maize inbred lines. Plant 

Soil 1993; 150, 25-32. 

Gallego SM, Kogan MJ, Azpilicueta CE, Peña C, Tomaro ML. Glutathione-mediated 

antioxidative mechanisms in sunflower (Helianthus Annuus L.) cells in response to 

cadmium stress. Plant Growth Regul 2005; 46: 267-76.  

Gong JM, Lee DA, Schroeder JI. Long-distance root-to-shoot transport of phytochelatins and 

cadmium in Arabidopsis. Proc Natl Acad Sci USA 2003; 100: 10118-23.  

Grill E, Winnacker EL, Zenk MH. Phytochelatins: The principal heavy-metal complexing 

peptides of higher plants. Science 1985; 230: 674-6. 

Grill E, Gekeler W, Winnacker E, Zenk HH. Homo-phytochelatins are heavy metal-binding 

peptides of homo-glutathione containing Fabales. Fed Eur Biochem Soc 1986; 205: 47-50. 

Grill E, Winnacker EL, Zenk MH. Phytochelatins, a class of heavy-metal-binding peptides from 

plants, are functionally analogous to metallothioneins. Proc Natl Acad Sci USA 1987; 84: 

439-43. 

Grill E, Thumann J, Winnacker EL, Zenk MH. Induction of heavy-metal binding phytochelatins 

by inoculation of cell cultures in standard media. Plant Cell Rep 1988; 7: 375-8. 



27 

 

Grill E, Loffler S, Winnacker EL, Zenk MH. Phytochelatins, the heavy-metal-binding peptides 

of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl 

transpeptidase ( phytochelatin synthase ). Proc Natl Acad Sci USA 1989; 86: 6838-42. 

Kawakami SK, Gledhill M, Achterberg EP. Determination of phytochelatins and glutathione in 

phytoplankton from natural waters using HPLC with fluorescence detection. Trends Anal 

Chem 2006; 25: 133-42.  

Klapheck S, Fliegner W, Zimmer I. Hydroxymethyl-phytochelatins [(γ-glutamylcysteine)n-

serine] are metal-induced peptides of the poaceae. Plant Physiol 1994; 104: 1325-32. 

Kobayashi R, Yoshimura E. Differences in the binding modes of phytochelatin to cadmium (II) 

and zinc (II) ions. Biol Trace Elem Res 2006; 114: 313-8.  

Kondo N, Inai K, Isobe M, Goto T. Cadystin A and B: Major unit peptides comprising cadmium 

binding peptides induced in fission yeast separation, revision of structures and synthesis. 

Tetrahedron Lett 1984; 25: 3869-72. 

Le Faucheur S, Behra R, Sigg L. Phytochelatin induction, cadmium accumulation, and algal 

sensitivity to free cadmium ion in Scenedesmus vacuolatus. Environ Toxicol Chem 2005; 

24: 1731-7.  

Leopold I, Günther D. Investigation of the binding properties of heavy-metal-peptide complexes 

in plant cell cultures using HPLC-ICP-MS. Fresenius J Anal Chem 1997; 359: 364-70.  



28 

 

Lima AIG, Pereira SIA, de Almeida Paula Figueira EM, Caldeira GCN, de Matos Caldeira 

HDQ. Cadmium detoxification in roots of Pisum sativum seedlings: Relationship between 

toxicity levels, thiol pool alterations and growth. Environ Exp Bot 2006; 55: 149-62.  

Maier EA, Matthews RD, McDowell JA, Walden RR, Ahner BA. Environmental cadmium 

levels increase phytochelatin and glutathione in lettuce grown in a chelator-buffered 

solution. J Environ Qual 2003; 32:1356-64. 

Mendoza-Cózatl DG, Butko E, Springer F, Torpey JW, Komives EA, Kehr J et al. Identification 

of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica 

napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of 

cadmium on iron translocation. Plant J 2008; 54: 249-59.  

Meuwly P, Thibault P, Schwen AL, Rauser, WE. Three families of thiol peptides are induced by 

cadmium in maize. Plant J 1995; 7: 391-400. 

Minocha R, Thangavel P, Dhankher OP, Long S. Separation and quantification of monothiols 

and phytochelatins from a wide variety of cell cultures and tissues of trees and other plants 

using high performance liquid chromatography. J Chromatogr A 2008; 1207: 72-83.  

Nocito FF, Lancilli C, Dendena B, Lucchini G, Sacchi, GA. Cadmium retention in rice roots is 

influenced by cadmium availability, chelation and translocation. Plant Cell Environ 2011; 

34: 994-1008.  



29 

 

Persson DP, Hansen TH, Holm PE, Schjoerring JK, Hansen HCB, Nielsen J et al. Multi-

elemental speciation analysis of barley genotypes differing in tolerance to cadmium toxicity 

using SEC-ICP-MS and ESI-TOF-MS. J Anal At Spectrom 2006; 21: 996-1005.  

Ranieri A, Castagna A, Scebba F, Careri M, Zagnoni I, Predieri G et al. Oxidative stress and 

phytochelatin characterisation in bread wheat exposed to cadmium excess. Plant Physiol 

Biochem 2005; 43: 45-54.  

Rijstenbil JW, Wijnholds JA. HPLC analysis of nonprotein thiols in planktonic diatoms: Pool 

size , redox state and response to copper and cadmium exposure. Marine Biol 1996; 127: 

45-54. 

Sadi BBM, Vonderheide AP, Gong JM, Schroeder JI, Shann JR, Caruso JA. An HPLC-ICP-MS 

technique for determination of cadmium-phytochelatins in genetically modified Arabidopsis 

thaliana. J Chromatogr B 2008; 861: 123-9. 

Salt DE, Rauser WE. MgATP-dependent transport of phytochelatins across the tonoplast of oat 

roots. Plant Physiol 1995; 107: 1293-1301.  

Sanità di Toppi L, Gabbrielli R. Response to cadmium in higher plants. Environ Exp Bot 1999; 

41: 105-30.  

Scarano G, Morelli E. Characterization of cadmium-and lead-phytochelatin complexes formed in 

a marine microalga in response to metal exposure. Biometals 2002; 15: 145-51.  

Scheller HV, Huang B, Hatch E, Goldsbrough PB. Phytochelatin synthesis and glutathione levels 

in response to heavy metals in tomato cells. Plant Physiol 1987; 85: 1031-5.  



30 

 

Shelp BJ. The composition of phloem exudate and xylem sap from broccoli (Brassica oleracea 

var. italica) supplied with NH4
+, NO3

- or NH4NO3. J Exp Bot 1987; 38: 1619-36. 

Sneller FEC, van Heerwaarden LM, Koevoets PLM, Vooijs R, Schat H, Verkleij JAC. 

Derivatization of phytochelatins from Silene vulgaris, induced upon exposure to arsenate 

and cadmium: comparison of derivatization with Ellman’s reagent and Monobromobimane. 

J Agric Food Chem 2000; 48: 4014-9. 

Thangavel P, Long S, Minocha R. Changes in phytochelatins and their biosynthetic 

intermediates in red spruce (Oicea rubens Sarg.) cell suspension cultures under cadmium 

and zinc stress. Plant Cell Tissue Organ Cult 2007; 88: 201-16. 

Tukendorf A, Rauser WE. Changes in glutathione and phytochelatins in roots of maize seedlings 

exposed to cadmium. Plant Sci 1990; 70: 155-66.  

Uraguchi S, Mori S, Kuramata M, Kawasaki A, Arao T, Ishikawa S. Root-to-shoot Cd 

translocation via the xylem is the major process determining shoot and grain cadmium 

accumulation in rice. J Exp Bot 2009; 60: 2677-88.  

US EPA (United States Environmental Protection Agency) (2005), Test methods for evaluating 

solid waste, physical/chemical methods, series 3000. [Online] Available: 

http://www.epa.gov/epaoswer/hazwaste/test/main.htm/ (Jan 4, 2012) 

Wang MJ, Wang WX. Cadmium sensitivity, uptake, subcellular distribution and thiol induction 

in a marine diatom: Exposure to cadmium. Aquat Toxicol 2011; 101: 377-86.  



31 

 

Wu FB, Chen F, Wei K, Zhang GP. Effect of cadmium on free amino acid, glutathione and 

ascorbic acid concentrations in two barley genotypes (Hordeum vulgare L.) differing in 

cadmium tolerance. Chemosphere 2004; 57: 447-54.  

Zitka O, Krystofova O, Sobrova P, Adam V, Zehnalek J, Beklova M, Kizek R. Phytochelatin 

synthase activity as a marker of metal pollution. J Hazard Mater 2011; 192: 794-800.  

 



32 

 

Table 1 

Linear ranges, r2 and slope values for standard curves of the thiol compounds 

Component 
name 

Detection limit 
(nmol 50 µL-1) 

Linear range  

(nmol 50 µL-1) 

Coefficient of 
determination, r2 

slope 

Cys 0.02 0 - 1.67 0.99 44.39 

GSH 0.02 0 - 1.67 0.99 26.67 

γ-EC 0.02 0 - 1.67 0.99 25.68 

PC2 0.10 0 - 1.67 0.99 4.88 

PC3 0.01 0 - 1.67 0.98 79.63 

PC4 0.01 0 - 0.83 0.94 73.32 

 

Table 2 

Solvent gradient profile used in the separation of MBrB-derivatized thiols using HPLC 

Time 

(min) 

Solvent A (by volume) 

(0.1% TFA) 

Solvent B (by volume) 

(ACN) 

0.1 95.0 5.0 

40.0 70.0 30.0 

41.0 40.0 60.0 

45.0 0 100.0 

55.0 0 100.0 

56.0 95.0 5.0 

60.0 95.0 5.0 
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Table 3 

Concentration and amount of Cd in barley and lettuce grown in different Cd treatments. Plants were grown with 0 or 1.0 µM CdCl2 for 
28 d.  Half of the plants grown with Cd were transferred to 5.0 mM CdCl2 for 1 h immediately prior to harvest. Within each tissue, 
different lower case letters indicate significant differences in Cd concentration and Cd accumulation, as determined by post hoc Tukey 
tests (p<0.05). Values are mean (SE), n=3 for each treatment, dl=detection limit. 

 Cd treatment                Barley                  Lettuce 

Shoot  Root  Shoot  Root  

 

Cd 
concentration 

(mg g-1) 

No  Cd <dl a 0.004 (0.001) a <dl a <dl a 

1.0 µM 0.085 (0.010) b 1.177 (0.010) b 0.206 (0.011) b 0.326 (0.026) a 

5.0 mM 0.133 (0.002) c 6.339 (0.459) c 0.268 (0.007) c 15.46 (0.599) b 

One-way 
ANOVA 

p F(2,8) p F(2,8) p F(2,8) p F(2,8) 

0.001 130.86 0.001 33.51 0.001 295.26 0.001 670.71 

 

Total Cd (mg) 

0 <dl a 0.003 (0.001) a <dl a <dl a 

1.0 µM 0.142 (0.012) b 0.448 (0.036) a 0.223 (0.037) b 0.065 (0.012) a 

5.0 mM 0.243 (0.011) c 2.325 (0.368) b 0.259 (0.013) b 3.032 (0.319) b 

One-way 
ANOVA 

p F(2,8) p F(2,8) p F(2,8) p F(2,8) 

0.001 168.70 0.001 33.51 0.001 34.74 0.001 93.43 
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% of total Cd 
retained in the 
root 

No Cd <dl <dl 

1.0 µM 76 (1.7) 23 (1.2) 

5.0 mM 90 (0.9) 92 (0.4) 
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Table 4 

Molar amounts of phytochelatins (PC2, PC3, and PC4) and their precursor monothiols (Cys, γ-EC, and GSH) in the 
shoot and root tissue extracts of barley and lettuce exposed to different Cd treatments.  Plants were grown with 0 or 1.0 
µM CdCl2 for 28 d.  Half of the plants grown with Cd were transferred to 5.0 mM CdCl2 for 1 h immediately prior to 
harvest. Within each thiol-containing molecule, different lower case letters indicate significant differences in amounts, 
as determined by post-hoc Tukey tests (P<0.05). Values are mean (SE), n=3 for each treatment, dl=detection limit.  

Tissue Cd treatment  Cys (µmol) γ-EC (µmol) GSH (µmol) PC2 (µmol) PC3 (µmol) PC4 (µmol) 

B
ar

le
y 

sh
oo

t 

No Cd 5.74 (0.80) b 0.99 (0.24) a 20.10 (3.29) b <dl <dl 0.27 (0.03) b 

1 µM Cd 1.79 (0.12) a 0.51 (0.03) a 8.00 (0.08) a <dl <dl 0.13 (0.02) a 

5 mM Cd 5.93 (0.11) b 0.79 (0.19) a 14.75 (0.23) ab <dl <dl 0.26 (0.01) b 

One-way 
ANOVA 

p F(2,8) p F(2,8) p F(2,8)   p F(2,8) 

0.001 24.59 0.24 1.84 0.01 10.13   0.007 13.07 

B
ar

le
y 

ro
ot

 

   
 

  

No Cd <dl a <dl a 2.83 (0.42) a <dl a <dl a <dl a 

1 µM Cd 0.20 (0.04) b 0.72 (0.09) b 2.09 (0.19) a 1.60 (0.15) b 0.05 (0.01) b 0.11 (0.01) b 

5 mM Cd 0.91 (0.09) c 0.74 (0.08) b 2.70 (0.15) a 2.31 (0.24) c 0.05 (0.003) b 0.12 (0.01) b 

One-way 
ANOVA 

p F(2,8) p F(2,8) p F(2,8) p F(2,8) p F(2,8) p F(2,8) 

0.001 70.73 0.001 36.77 0.22 1.99 0.001 52.44 0.002 22.93 0.001 66.49 



36 

 

Le
ttu

ce
 sh

oo
t 

 
 

  

No Cd 8.60 (0.87) b <dl 8.35 (1.14) b <dl <dl 0.18 (0.01) b 

1 µM Cd 3.05 (0.50) a <dl 3.95 (0.54) a <dl <dl 0.09 (0.02) a 

5 mM Cd 3.89 (0.01) a <dl 3.34 (0.05) a <dl <dl 0.30 (0.004) c 

One-way 
ANOVA 

p F(2,8)  p F(2,8)   p F(2,8) 

0.01 26.66  0.005 14.07   0.001 64.54 

Le
ttu

ce
 ro

ot
 

   
  

 

  

No Cd 0.13 (0.01) a <dl 0.44 (0.06) b <dl <dl <dl 

1 µM Cd 0.26 (0.01) a <dl 0.21 (0.03) a <dl <dl <dl 

5 mM Cd 0.09 (0.004) a <dl 0.39 (0.001) b <dl <dl <dl 

One-way 
ANOVA 

p F(2,8)  p F(2,8)    

0.059 4.73  0.01 9.75    
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Table 5 

Estimated amounts of Cd2+ that could be complexed with the thiol-containing molecules in the symplast of roots of 
barley and lettuce.  Total Cd includes both apoplastic and symplastic Cd. Symplast Cd was estimated using data from 
Fig. 1. The amounts of Cd2+ in the symplast that could form complexes with phytochelatins (PC2-4) and monothiols 
(Cys, γ-EC and GSH) were calculated assuming that all of the Cd in the symplast was in the Cd2+ form and all thiol 
groups were available to interact with all Cd2+ ions. The thiol/ Cd2+ stoichiometries used were 1:1, 1:2 and 1:3 for the 
monothiols-Cd2+, PC2-Cd2+, and PC3-4-Cd2+ complexes, respectively. Barley and lettuce were grown with 0 or 1.0 µM 
CdCl2 for 28 d.  Half of the plants grown with Cd were transferred to 5.0 mM CdCl2 for 1 h immediately prior to 
harvest. Molar amounts are mean (SE), n=3 for each treatment, dl=detection limit.  

 

Species Cd 
treatment  

Total root 
Cd (µmol) 

Symplast Cd 
(µmol) 

Cd2+ 
chelated by 
PCs (µmol) 

% Cd2+ 
chelated 
by  PCs 

Total Cd2+ 
chelated by  
monothiols and 
PCs (µmol) 

% Cd2+ chelated 
by  monothiols 
and PCs 

 

Barley 

No Cd 0.03 (0.01)  0.01 (0.01)  0   0 2.83 (0.42)  100 

1.0 µM 3.99 (0.32)  2.15 (0.17)  3.66 (0.34)  100 6.68 (0.63)  100 

5.0 mM 20.69 (3.27)  11.17 (1.77)  5.12 (0.53)  45.8 9.48 (0.83)  84.9 

 

Lettuce 

No Cd <dl  <dl  0 0 0.57 (0.06)  100 

1.0 µM 0.58 (0.11)  0.20 (0.03)  0 0 0.46 (0.10)  100 

5.0 mM 26.97 (2.84)  9.30 (0.98)  0 0 0.49 (0.004)  5.3 
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Fig. 1. (a) Concentration (mg g-1) and (b) total amount (mg) of Cd in the apoplast and symplast 

compartments in lettuce and barley root. The plants were grown in 1.0 µM CdCl2 for 28 d before 

exposed to 5.0 mM CdCl2 for 1 h at harvest. Within each species, different lower case letters 

indicate significant differences in Cd accumulation, as determined by one-way ANOVA and post 

hoc Tukey tests (p<0.05).  
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Fig. 2. Schematic presentation of the relative changes in molar amounts of phytochelatins (PC2, 

PC3, and PC4) and their precursor monothiols (Cys, γ-EC, and GSH) in plants from the two Cd 

treatments relative to the corresponding control plants, as reported in Table 4. Within each 

species, = indicates no change relative to control, upward and downward arrows indicate 

increases and decreases relative to control, respectively. One arrow indicates a change in the 

order of 30-45%, two arrows indicate a change in the order of 50%, three arrows indicate a 

change of about 100% and four arrows indicate a change of about 500%, <dl indicates below 

detection limit. 
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Fig. S1. Cadmium exposure results in the appearance of PCs (PC2, PC3, and PC4) and precursor 

monothiols (cys, γ-EC, and GSH) in the root extract of barley. Thiols from (a) control and plants 

exposed to (b) 1.0 µM CdCl2 for 28 d, and (c) 5.0 mM CdCl2 for 1 h at harvest were derivatized 

with monobromobimane, separated by size exclusion HPLC and detected by fluorescence. 
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Fig. S2. Cadmium exposure results in the appearance of precursor monothiols only (cys, γ-EC, 

and GSH) in the root extract of lettuce. Thiols from (a) control and plants exposed to (b) 1.0 µM 

CdCl2 for 28 d, and (c) 5.0 mM CdCl2 for 1 h at harvest were derivatized with 

monobromobimane, separated by size exclusion HPLC and detected by fluorescence. 
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