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Abstract 

 We used terminal restriction fragment length polymorphism (TRFLP) analysis to look at the 

microbial community profiles of the rhizosphere surrounding two pairs of high- and low-metal (Cd)-

accumulating plants (Brassica and Triticum).  Unexpectedly, the microbial community did not vary with 

soil type, time, plant type, or metal-accumulating ability of the plant.  Instead, when a plant’s metal-

accumulating ability was well matched to the level of metal contamination in the soil, the microbial 

populations in the rhizosphere were different than those of the seed endophytes and bulk soil. Unmatched 

plants had the same microbial community as bulk soil.  The plant interaction with the soil, therefore, is 

essential to forming the bacterial community in the rhizosphere.  

 

Keywords:  microbial community, rhizosphere, TRFLP, cadmium 
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Cadmium occurs naturally in soil but its concentration in agricultural systems may increase after 

the application of manure and phosphate fertilizers (Alloway et al., 1999; Grant, 2011).  Natural variation 

in the uptake of toxic metals exists among plant species and varieties within a species including durum 

wheat (Grant et al., 2008).  The distribution of Cd in two cultivars (cv) of durum wheat (Triticum durum 

Desf.), Arcola and Kyle, confirmed Kyle as a high-accumulator and Arcola as a low-accumulator (Chan 

and Hale, 2004).  Similarly, Brassica juncea is an established metal high-accumulator, while B. napus is a 

low-accumulator (McGrath et al., 2001).  The use of these pairs of Triticum and Brassica offers a good 

system to study the relationship between Cd tolerance and the microbial community in the rhizosphere. The 

microbiome is often described as providing a potential mechanism for differential metal accumulation in 

plants, and can aid in the plant’s response to toxic metals.  However, to our knowledge there has been no 

attempt to characterize how the host plant’s inherent metal tolerance may shape its rhizosphere community. 

Surface-sterilized seeds of high Cd-accumulating T. durum cv Kyle and B. juncea, as well as low Cd-

accumulating T. durum cv Arcola and B. napus were individually sown in 288 cm3 pots containing one of 

two soils.  Fertilized (high Cd) and unfertilized (low Cd) soil was collected from the top 7.5 cm of an 

agricultural field near Brandon, Canada. One half of the field had received Cd-contaminated fertilizer from 

2002 to 2009.  Soil subsamples were sent to A&L Canada Laboratories Inc. (London, Ontario) for analysis 

of Ca, Mg, NO3
–, P, K, Na, B, Cu, Fe, Mn, Zn, Al, % organic matter, pH and cation exchange capacity. The 

concentrations of total and bioavailable Cd in the soils were determined using a modified United States 

Environmental Protection Agency test method SW-846 (US EPA, 2000) and Novozamsky et al. (1993), 

respectively, and inductively-coupled plasma atomic emission spectrometry as described in Akhter and 

Macfie (2012).  Among the properties that were measured, only the concentrations of P and Cd varied 

between the two soils. Before beginning the experiment, 0.172 g/pot P, as Triple Superphosphate (Plant 

Products Co. Ltd., Brampton, ON), was added to the unfertilized soil to balance the phosphorus 

concentration.  The current Canadian Council of Ministers of the Environment limit for Cd is 1.4 mg/kg 

soil (CCME, 2013).  Both the unfertilized and fertilized soils were above this threshold at 2.38 ± 0.17 and 

3.07 ± 0.10 mg/kg (total Cd) and 0.47 ± 0.01 and 0.73 ± 0.02 mg/kg (bioavailable Cd), respectively.  

Although both soils are Cd-contaminated, we have labeled them as having relatively less or more Cd for the 

purposes of our experiment.  All pots were kept in a growth chamber maintained at 21°C and 60% RH with 
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a 16:8 hour light:dark cycle and 230 ± 5.7 µmol/m2/s light intensity.  One treatment in each soil type was 

left unplanted to represent bulk soil.  Each treatment contained 4 replicates. Plants and soils were harvested 

after 28 d.   

The relative Cd-accumulating ability of each plant species was confirmed following the modified US 

EPA (2000) method described in Akhter and Macfie (2012). The tissue Cd concentrations were consistent 

with the relative metal-accumulating abilities of these plants (Chan and Hale, 2004; McGrath et al, 2001).  

None of the plants showed signs of Cd-stress; therefore, the resulting changes in the rhizosphere 

communities were not stress-induced. 

Bacterial community profiles were generated for unsown seeds, bulk soil, and the rhizospheres. 

Surface-sterilized seeds for all species were pulverized to obtain the endophtyes.  Bulk soil samples were 

collected directly from each unplanted pot.  To collect the rhizosphere soil, plant roots were shaken to 

remove loose soil particles then placed in a 50 mL tube with 25 mL of distilled water and vortexed.  

Samples were then centrifuged and the soil pellet was collected as the rhizosphere.  Total community DNA 

was extracted from 250 mg of seed tissue, dry bulk soil, or rhizosphere soil using a NORGEN Soil DNA 

Isolation Kit (Cat # 26500, Biotek Corporation, USA) and diluted to exactly 30 µg/µL in filter-sterilized 10 

mM Tris, pH 8.0.  Bacterial 16s rRNA genes were then PCR-amplified using the fluorophore-labeled 

primer set 63F (5’-CAGGCCTAACACATGCAAGTC-3’) and 1389R (5’-ACGGGCGGTGTGTACAAG-

3’) (Marchesi et al., 1998) and PCR parameters outlined in Osborn et al. (2000).  The amplified DNA was 

purified using DNA Clean and ConcentratorTM – 5 Kit (Zymo Research Corporation, USA – cat # D4014) 

before digestion with the restriction enzyme HhaI (New England Biolabs Inc.).  The samples were sent to 

the Advanced Analysis Centre Genomic Facility (University of Guelph, Guelph, Ontario) for TRFLP 

analysis.  

The TRFLP fragments were analyzed using GeneMarker® AFLP/Genotyping Software version 2.2.0 

after undergoing manual alignment.  The matrix generated by GeneMarker was turned into a 

presence/absence matrix, a Bray-Curtis similarity matrix was generated in Primer 5.2.4 and non-metric 

multidimensional scaling (NMDS) plots were generated using 10 iterations.  Analysis of similarity 

(ANOSIM) was performed for all samples including all factors: time, soil type, genus, plant type, metal 

accumulating ability, and accumulating ability/soil type match.  For this last parameter, the inherent metal-
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accumulating ability of the plant and the relative Cd content of the soil were considered: high-accumulating 

plants in more contaminated soil and low-accumulating plants in less contaminated soil were considered to 

be “matched” and high-accumulating plants in less contaminated soil or low-accumulating plants in more 

contaminated soil were considered to be “unmatched”.  For all statistical tests a p value of ≤ 0.05 was 

considered significant. 

The following factors were not a source of the differences among bacteria communities: soil type 

(which includes fertilization regime and therefore Cd concentration and possible differences in P 

availability; Fig 1A), time (Fig 1 B), plant genus, plant species, and Cd-accumulating ability (data not 

shown).  The lack of difference between the soil types suggests that the concentration of Cd in the fertilized 

soil was not high enough to select against any bacteria found in the unfertilized soil.     

The endophytic bacteria were different between the plant genera and the Triticum cultivars (Fig 1 

C), which is not surprising (Ahlholm et al., 2002; Manter et al., 2010).  If the parent plant were grown in 

contaminated soil, the endophytes in the seed might be selected to persist with the seedling in a similarly 

contaminated environment, and vice versa.  However, the endophyte community profile was markedly 

different from bacterial communities in both the bulk and rhizosphere soils (Fig 2). Close clustering in an 

NMDS plot suggests negligible variation among the bacterial communities (one point on the plot represents 

one community). 

The bacteria communities in the rhizosphere of plant types grown in soil that matched their 

accumulating ability (i.e. Cd-accumulating plant in soil with more Cd or non-accumulating plant in soil 

with less Cd) ) were different than those of plant types grown in unmatched soils (i.e. Cd-accumulating 

plant in soil with less Cd or non-accumulating plant in soil with more Cd)) (Fig 1 D).  This suggests that the 

plant’s interaction with the soil is essential to forming the rhizosphere bacterial community.  The bacterial 

communities in the rhizosphere of the unmatched plants were the same as the communities in the bulk soil, 

while the bacterial communities in the rhizosphere of matched plants were significantly different (Fig 2) for 

all plant types.  The plants grown in unmatched soil do not appear to influence the soil environment in a 

way that would allow new or different bacteria to colonize the rhizosphere.  The bacterial communities in 

the rhizosphere of plants grown in matched soil had the greatest variation among the bacteria communities 
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(Fig 2), which suggests that these plants were less selective when recruiting soil microbes than were the 

unmatched plants, which clustered together.     

 

Different bacteria communities in the matched plant/soil rhizosphere compared to the endophyte 

or bulk soil communities suggests that the matched plants impose greater change to their soil environment, 

which is reflected in the three-fold higher number of unique fragments detected in the matched compared to 

the unmatched rhizosphere (Fig 3).  The bulk soil samples did not contain any unique fragments.  

Approximately 40% of the fragments were found in all three treatments. Exudation of compounds that 

influence the composition of the soil microbial community (Doornbos et al., 2012) may have led to the 

proliferation of certain bacterial species to bring them above the TRFLP threshold and the subsequent 

increase in the number of fragments that were detected in the matched rhizosphere.  The mechanism used 

by matched plants to alter the microbial community in the rhizosphere is not known and further 

investigation into the significance of matching plant metal-accumulating ability to the contamination level 

of the soil is needed, including the testing of additional low- and high- accumulating pairs of plants.  Since 

the seed endophytes were ruled out as a source of this variation, the most important factor is likely related 

to chemical changes in the rhizosphere.   
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Fig 1. NMDS ordination based on Bray-Curtis similarities of soil bacteria community TRFLP 

profiles.  Dis(similarity) is reflected in the distance between points for A) soil types B) time C) seed 

endophytes and D) plant accumulating ability/soil type match.  Global R and P are based on the overall 

trend. No significant difference was detected in panel A or B.  Seed endophytes not sharing a common 

letter in the stats column of panel C were significantly different.  There was a significant difference 

between matched and unmatched soils in panel D (ANOSIM followed by a pair-wise post-hoc test, p < 

0.05, n = 3).   



 9 

 

 

Fig 2. NMDS ordination based on Bray-Curtis similarities of bacteria community TRFLP profiles 

among bulk soil, endophytes, matched, and unmatched soil/plant communities for each plant type.  

Dis(similarity) is reflected in the distance between points for A) Triticum durum var. Kyle B) T. durum var. 

Arcola, C) Brassica juncea and D) B. napus.  Global R and P are based on the overall trend.  Statistical 

results were the same for all 4 panels therefore the stats legend applies to all panels.  Treatments not sharing 

a common letter in the stats column were significantly different (ANOSIM followed by pair-wise post-hoc 

test, p < 0.05, n = 3). 
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Fig 3.  Schematic representation of the number of common fragments among matched rhizosphere, 

unmatched rhizosphere, and bulk soil samples.  The numbers of fragments are based on pooled TRFLP 

fragment presence/absence data.  Within the matched rhizosphere treatment, samples from plants with high 

accumulating ability in more contaminated soil and those with low accumulating ability in less 

contaminated soil were pooled.  Similarly, within the unmatched rhizosphere treatment, samples from 

plants with high accumulating ability in less contaminated soil and those with low accumulating ability in 

more contaminated soil were pooled.  For the bulk soil treatment, the two soil types were also pooled.  

These pools were deemed acceptable since no significant differences were found among the components of 

each pool (Fig 1 and Fig 2).  
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