400 research outputs found

    Constraining hadronization mechanisms with Λc+\rm \Lambda_{\rm c}^{+}/D0^0 production ratios in Pb-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV

    No full text
    The production of prompt Λc+\rm \Lambda_{\rm c}^{+} baryons at midrapidity (y<0.5|y|<0.5) was measured in central (0-10%) and mid-central (30-50%) Pb-Pb collisions at the center-of-mass energy per nucleon-nucleon pair sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV with the ALICE detector. The Λc+\rm \Lambda_{\rm c}^{+} production yield, the Λc+\rm \Lambda_{\rm c}^{+}/D0^0 production ratio, and the Λc+\rm \Lambda_{\rm c}^{+} nuclear modification factor RAAR_{\rm AA} are reported. The results are more precise and more differential in transverse momentum (pTp_{\rm T}) and centrality with respect to previous measurements. The Λc+\rm \Lambda_{\rm c}^{+}/D0^0 ratio, which is enhanced with respect to the pp measurement for 4<pT<84< p_{\rm T} < 8 GeV/cc, is described by theoretical calculations that model the charm-quark transport in the quark-gluon plasma and include hadronization via both coalescence and fragmentation mechanisms

    Anisotropic flow of identified hadrons in Xe-Xe collisions at sNN \sqrt{s_{\mathrm{NN}}} = 5.44 TeV

    No full text
    International audienceMeasurements of elliptic (v2_{2}) and triangular (v3_{3}) flow coefficients of π±^{±}, K±^{±}, p+p \overline{\mathrm{p}} , KS0 {\mathrm{K}}_{\mathrm{S}}^0 , and Λ+Λ \overline{\Lambda} obtained with the scalar product method in Xe-Xe collisions at sNN \sqrt{s_{\mathrm{NN}}} = 5.44 TeV are presented. The results are obtained in the rapidity range |y| < 0.5 and reported as a function of transverse momentum, pT_{T}, for several collision centrality classes. The flow coefficients exhibit a particle mass dependence for pT_{T}< 3 GeV/c, while a grouping according to particle type (i.e., meson and baryon) is found at intermediate transverse momenta (3 < pT_{T}< 8 GeV/c). The magnitude of the baryon v2_{2} is larger than that of mesons up to pT_{T} = 6 GeV/c. The centrality dependence of the shape evolution of the pT_{T}-differential v2_{2} is studied for the various hadron species. The v2_{2} coefficients of π±^{±}, K±^{±}, and p+p \overline{\mathrm{p}} are reproduced by MUSIC hydrodynamic calculations coupled to a hadronic cascade model (UrQMD) for pT_{T}< 1 GeV/c. A comparison with vn_{n} measurements in the corresponding centrality intervals in Pb-Pb collisions at sNN \sqrt{s_{\mathrm{NN}}} = 5.02 TeV yields an enhanced v2_{2} in central collisions and diminished value in semicentral collisions.[graphic not available: see fulltext

    First study of the two-body scattering involving charm hadrons

    No full text
    This Letter presents the first measurement of the interaction between charm hadrons and nucleons. The two-particle momentum correlations of pD\mathrm{pD^-} and pD+\mathrm{\overline{p}D}^+ pairs are measured by the ALICE Collaboration in high-multiplicity pp collisions at s=13 TeV\sqrt{s} = 13~\mathrm{TeV}. The data are compatible with the Coulomb-only interaction hypothesis within (1.1-1.5)σ\sigma. Considering an attractive nucleon(N)D\overline{\mathrm{D}} strong interaction, in contrast to most model predictions which suggest an overall repulsive interaction, slightly improves the level of agreement. This measurement allows for the first time an estimation of the 68% confidence level interval for the isospin I=0\mathrm{I}=0 inverse scattering length of the ND\mathrm{N\overline{D}} state f0, I=01[0.4,0.9] fm1{f_{0,~\mathrm{I}=0}^{-1} \in [-0.4,0.9]~\mathrm{fm^{-1}}}, assuming negligible interaction for the isospin I=1\mathrm{I}=1 channel

    Higher-order correlations between different moments of two flow amplitudes in Pb-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV

    No full text
    The correlations between different moments of two flow amplitudes, extracted with the recently developed asymmetric cumulants, are measured in Pb-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV recorded by the ALICE detector at the LHC. The magnitudes of the measured observables show a dependence on the different moments as well as on the collision centrality, indicating the presence of non-linear response in all even moments up to the eighth. Furthermore, the higher-order asymmetric cumulants show different signatures than the symmetric and lower-order asymmetric cumulants. Comparisons with state-of-the-art event generators using two different parameterizations obtained from Bayesian optimization show differences between data and simulations in many of the studied observables, indicating a need for further tuning of the models behind those event generators. These results provide new and independent constraints on the initial conditions and transport properties of the system created in heavy-ion collisions.The correlations between different moments of two flow amplitudes, extracted with the recently developed asymmetric cumulants, are measured in Pb-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV recorded by the ALICE detector at the LHC. The magnitudes of the measured observables show a dependence on the different moments as well as on the collision centrality, indicating the presence of non-linear response in all even moments up to the eighth. Furthermore, the higher-order asymmetric cumulants show different signatures than the symmetric and lower-order asymmetric cumulants. Comparisons with state-of-the-art event generators using two different parameterizations obtained from Bayesian optimization show differences between data and simulations in many of the studied observables, indicating a need for further tuning of the models behind those event generators. These results provide new and independent constraints on the initial conditions and transport properties of the system created in heavy-ion collisions

    Skewness and kurtosis of mean transverse momentum fluctuations at the LHC energies

    No full text
    The first measurements of skewness and kurtosis of mean transverse momentum (pT\langle p_\mathrm{T}\rangle) fluctuations are reported in Pb-Pb collisions at sNN\sqrt{s_\mathrm{NN}} == 5.02 TeV, Xe-Xe collisions at sNN\sqrt{s_\mathrm{NN}} == 5.44 TeV and pp collisions at s=5.02\sqrt{s} = 5.02 TeV using the ALICE detector. The measurements are carried out as a function of system size dNch/dηη<0.51/3\langle \mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta\rangle_{|\eta|<0.5}^{1/3}, using charged particles with transverse momentum (pTp_\mathrm{T}) and pseudorapidity (η\eta), in the range 0.2<pT<3.00.2 < p_\mathrm{T} < 3.0 GeV/c\it{c} and η<0.8|\eta| < 0.8, respectively. In Pb-Pb and Xe-Xe collisions, positive skewness is observed in the fluctuations of pT\langle p_\mathrm{T}\rangle for all centralities, which is significantly larger than what would be expected in the scenario of independent particle emission. This positive skewness is considered a crucial consequence of the hydrodynamic evolution of the hot and dense nuclear matter created in heavy-ion collisions. Furthermore, similar observations of positive skewness for minimum bias pp collisions are also reported here. Kurtosis of pT\langle p_\mathrm{T}\rangle fluctuations is found to be in good agreement with the kurtosis of Gaussian distribution, for most central Pb-Pb collisions. Hydrodynamic model calculations with MUSIC using Monte Carlo Glauber initial conditions are able to explain the measurements of both skewness and kurtosis qualitatively from semicentral to central collisions in Pb-Pb system. Color reconnection mechanism in PYTHIA8 model seems to play a pivotal role in capturing the qualitative behavior of the same measurements in pp collisions.The first measurements of skewness and kurtosis of mean transverse momentum (pT\langle p_\mathrm{T}\rangle) fluctuations are reported in Pb-Pb collisions at sNN\sqrt{s_\mathrm{NN}} = 5.02 TeV, Xe-Xe collisions at sNN\sqrt{s_\mathrm{NN}}== 5.44 TeV and pp collisions at s=5.02\sqrt{s} = 5.02 TeV using the ALICE detector. The measurements are carried out as a function of system size dNch/dηη<0.51/3\langle \mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta\rangle_{|\eta|<0.5}^{1/3}, using charged particles with transverse momentum (pTp_\mathrm{T}) and pseudorapidity (η\eta), in the range 0.2<pT<3.00.2 < p_\mathrm{T} < 3.0 GeV/cc and η<0.8|\eta| < 0.8, respectively. In Pb-Pb and Xe-Xe collisions, positive skewness is observed in the fluctuations of pT\langle p_\mathrm{T}\rangle for all centralities, which is significantly larger than what would be expected in the scenario of independent particle emission. This positive skewness is considered a crucial consequence of the hydrodynamic evolution of the hot and dense nuclear matter created in heavy-ion collisions. Furthermore, similar observations of positive skewness for minimum bias pp collisions are also reported here. Kurtosis of pT\langle p_\mathrm{T}\rangle fluctuations is found to be in good agreement with the kurtosis of Gaussian distribution, for most central Pb-Pb collisions. Hydrodynamic model calculations with MUSIC using Monte Carlo Glauber initial conditions are able to explain the measurements of both skewness and kurtosis qualitatively from semicentral to central collisions in Pb--Pb system. Color reconnection mechanism in PYTHIA8 model seems to play a pivotal role in capturing the qualitative behavior of the same measurements in pp collisions

    Charm production and fragmentation fractions at midrapidity in pp collisions at s=13\sqrt{s} = 13 TeV

    No full text
    International audienceMeasurements of the production cross sections of prompt D0{\rm D^0}, D+{\rm D^+}, D+{\rm D^{\ast +}}, Ds+{\rm D_s^+}, Λc+{\rm \Lambda_{c}^{+}}, and Ξc+{\rm \Xi_{c}^{+}} charm hadrons at midrapidity in proton-proton collisions at s=13\sqrt{s}=13 TeV with the ALICE detector are presented. The D-meson cross sections as a function of transverse momentum (pTp_{\rm T}) are provided with improved precision and granularity. The ratios of pTp_{\rm T}-differential meson production cross sections based on this publication and on measurements at different rapidity and collision energy provide a constraint on gluon parton distribution functions at low values of Bjorken-xx (10510410^{-5}-10^{-4}). The measurements of Λc+{\rm \Lambda_{c}^{+}} (Ξc+{\rm \Xi_{c}^{+}}) baryon production extend the measured pTp_{\rm T} intervals down to pT=0(3)p_{\rm T}=0(3)~GeV/c/c. These measurements are used to determine the charm-quark fragmentation fractions and the cc{\rm c\overline{c}} production cross section at midrapidity (y<0.5|y|<0.5) based on the sum of the cross sections of the weakly-decaying ground-state charm hadrons D0{\rm D^0}, D+{\rm D^+}, Ds+{\rm D_s^+}, Λc+{\rm \Lambda_{c}^{+}}, Ξc0{\rm \Xi_{c}^{0}} and, for the first time, Ξc+{\rm \Xi_{c}^{+}}, and of the strongly-decaying J/psipsi mesons. The first measurements of Ξc+{\rm \Xi_{c}^{+}} and Σc0,++{\rm \Sigma_{c}^{0,++}} fragmentation fractions at midrapidity are also reported. A significantly larger fraction of charm quarks hadronising to baryons is found compared to e+^+e^- and ep collisions. The cc{\rm c\overline{c}} production cross section at midrapidity is found to be at the upper bound of state-of-the-art perturbative QCD calculations

    Measurements of chemical potentials in Pb-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV

    No full text
    International audienceThis Letter presents the most precise measurement to date of the matter/antimatter imbalance at midrapidity in Pb-Pb collisions at a center-of-mass energy per nucleon pair sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV. Using the Statistical Hadronization framework, it is possible to obtain the value of the electric charge and baryon chemical potentials, μQ=0.18±0.90\mu_Q=-0.18\pm0.90 MeV and μB=0.71±0.45\mu_B=0.71\pm0.45 MeV, with unprecedented precision. A centrality-differential study of the antiparticle-to-particle yield ratios of charged pions, protons, Ω\Omega-baryons, and light (hyper)nuclei is performed. These results indicate that the system created in Pb-Pb collisions at the LHC is on average baryon-free and electrically neutral at midrapidity

    Measurement of inclusive charged-particle jet production in pp and p–Pb collisions at sNN=5.02\sqrt{s_{\rm NN}}=5.02 TeV

    No full text
    Measurements of inclusive charged-particle jet production in pp and p-Pb collisions at center-of-mass energy per nucleon-nucleon collision sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV and the corresponding nuclear modification factor RpPbchjetR_{\rm pPb}^{\rm ch\,jet} are presented, using data collected with the ALICE detector at the LHC. Jets are reconstructed in the central rapidity region ηjet<0.5\eta_{\rm jet} < 0.5 from charged particles using the anti-kTk_{\rm T} algorithm with resolution parameters R=0.2R = 0.2, 0.3, and 0.4. The pTp_{\rm T}-differential inclusive production cross section of charged-particle jets, as well as the corresponding cross-section ratios, are reported for pp and p-Pb collisions in the transverse momentum range 10<pT,jetch<14010 < p^{\rm ch}_{\rm T,jet} < 140 GeV/cc and 10<pT,jetch<16010 < p^{\rm ch}_{\rm T,jet} < 160 GeV/cc, respectively, together with the nuclear modification factor RpPbchjetR_{\rm pPb}^{\rm ch\,jet} in the range 10<pT,jetch<14010 < p^{\rm ch}_{\rm T,jet} < 140 GeV/cc. The analysis extends the pTp_{\rm T} range of the previously-reported charged-particle jet measurements by the ALICE Collaboration. The nuclear modification factor is found to be consistent with one and independent of the jet resolution parameter with the improved precision of this study, indicating that the possible influence of cold nuclear matter effects on the production cross section of charged-particle jets in p-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV is smaller than the current precision. The obtained results are in agreement with other minimum bias jet measurements available for RHIC and LHC energies, and are well reproduced by the NLO perturbative QCD POWHEG calculations with parton shower provided by PYTHIA8 as well as by JETSCAPE simulations.Measurements of inclusive charged-particle jet production in pp and p-Pb collisions at center-of-mass energy per nucleon-nucleon collision sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV and the corresponding nuclear modification factor RpPbchjetR_{\rm pPb}^{\rm ch\,jet} are presented, using data collected with the ALICE detector at the LHC. Jets are reconstructed in the central rapidity region ηjet<0.5|\eta_{\rm jet}| < 0.5 from charged particles using the anti-kTk_{\rm T} algorithm with resolution parameters R=0.2R = 0.2, 0.3, and 0.4. The pTp_{\rm T}-differential inclusive production cross section of charged-particle jets, as well as the corresponding cross-section ratios, are reported for pp and p-Pb collisions in the transverse momentum range 10<pT,jetch<14010 < p^{\rm ch}_{\rm T,jet} < 140 GeV/cc and 10<pT,jetch<16010 < p^{\rm ch}_{\rm T,jet} < 160 GeV/cc, respectively, together with the nuclear modification factor RpPbchjetR_{\rm pPb}^{\rm ch\,jet} in the range 10<pT,jetch<14010 < p^{\rm ch}_{\rm T,jet} < 140 GeV/cc. The analysis extends the pTp_{\rm T} range of the previously-reported charged-particle jet measurements by the ALICE Collaboration. The nuclear modification factor is found to be consistent with one and independent of the jet resolution parameter with the improved precision of this study, indicating that the possible influence of cold nuclear matter effects on the production cross section of charged-particle jets in p-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV is smaller than the current precision. The obtained results are in agreement with other minimum bias jet measurements available for RHIC and LHC energies, and are well reproduced by the NLO perturbative QCD POWHEG calculations with parton shower provided by PYTHIA8 as well as by JETSCAPE simulations

    Observation of abnormal suppression of f0(980){\rm f_0(980)} production in p-Pb collisions at sNN\sqrt{s_{\rm NN}} = 5.02 TeV

    No full text
    The dependence of f0\mathrm{f}_{0}(980) production on the final-state charged-particle multiplicity in p-Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}} = 5.02 TeV is reported. The production of f0\mathrm{f}_{0}(980) is measured with the ALICE detector via the f0(980)π+π\mathrm{f}_0 (980) \rightarrow \pi^{+}\pi^{-} decay channel in a midrapidity region of 0.5<y<0-0.5<y<0. Particle yield ratios of f0\mathrm{f}_{0}(980) to π\pi and K\mathrm{K}^{*}(892)0^{0} are found to be decreasing with increasing charged-particle multiplicity. The magnitude of the suppression of the f0\mathrm{f}_{0}(980)/π\pi and f0\mathrm{f}_{0}(980)/K\mathrm{K}^{*}(892)0^{0} yield ratios is found to be dependent on the transverse momentum pTp_{\mathrm{T}}, suggesting different mechanisms responsible for the measured effects. Furthermore, the nuclear modification factor QpPbQ_{\mathrm{pPb}} of f0\mathrm{f}_{0}(980) is measured in various multiplicity ranges. The QpPbQ_{\mathrm{pPb}} shows a strong suppression of the f0\mathrm{f}_{0}(980) production in the pTp_{\mathrm{T}} region up to about 4~GeV/cc. The results on the particle yield ratios and QpPbQ_{\mathrm{pPb}} for f0\mathrm{f}_{0}(980) may help to understand the late hadronic phase in p-Pb collisions and the nature of the internal structure of f0\mathrm{f}_{0}(980) particle.The dependence of f0\mathrm{f}_{0}(980) production on the final-state charged-particle multiplicity in p-Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}} = 5.02 TeV is reported. The production of f0\mathrm{f}_{0}(980) is measured with the ALICE detector via the f0(980)π+π\mathrm{f}_0 (980) \rightarrow \pi^{+}\pi^{-} decay channel in a midrapidity region of 0.5<y<0-0.5<y<0. Particle yield ratios of f0\mathrm{f}_{0}(980) to π\pi and K\mathrm{K}^{*}(892)0^{0} are found to be decreasing with increasing charged-particle multiplicity. The magnitude of the suppression of the f0\mathrm{f}_{0}(980)/π\pi and f0\mathrm{f}_{0}(980)/K\mathrm{K}^{*}(892)0^{0} yield ratios is found to be dependent on the transverse momentum pTp_{\mathrm{T}}, suggesting different mechanisms responsible for the measured effects. Furthermore, the nuclear modification factor QpPbQ_{\mathrm{pPb}} of f0\mathrm{f}_{0}(980) is measured in various multiplicity ranges. The QpPbQ_{\mathrm{pPb}} shows a strong suppression of the f0\mathrm{f}_{0}(980) production in the pTp_{\mathrm{T}} region up to about 4 GeV/cc. The results on the particle yield ratios and QpPbQ_{\mathrm{pPb}} for f0\mathrm{f}_{0}(980) may help to understand the late hadronic phase in p-Pb collisions and the nature of the internal structure of f0\mathrm{f}_{0}(980) particle

    Emergence of long-range angular correlations in low-multiplicity proton-proton collisions

    No full text
    This Letter presents the measurement of near-side associated per-trigger yields, denoted ridge yields, from the analysis of angular correlations of charged hadrons in proton--proton collisions at s\sqrt{s} = 13 TeV. Long-range ridge yields are extracted for pairs of charged particles with a pseudorapidity difference of 1.4<Δη<1.81.4 < |\Delta\eta| < 1.8 and a transverse momentum of 1<pT<21 < p_{\rm T} < 2 GeV/cc, as a function of the charged-particle multiplicity measured at mid-rapidity. This study extends the measurements of the ridge yield to the low multiplicity region, where in hadronic collisions it is typically conjectured that a strongly-interacting medium is unlikely to be formed. The precision of the new results allows for the first direct quantitative comparison with the results obtained in e+e\mathrm {e^{+}e^{-}} collisions at s\sqrt{s} = 91 GeV, where initial-state effects such as pre-equilibrium dynamics and collision geometry are not expected to play a role. In the multiplicity range where the e+e\mathrm {e^{+}e^{-}} results have good precision, the measured ridge yields in pp collisions are substantially larger than the limits set in e+e\mathrm {e^{+}e^{-}} annihilations. Consequently, the findings presented in this Letter suggest that the processes involved in e+e\mathrm {e^{+}e^{-}} annihilations do not contribute significantly to the emergence of long-range correlations in pp collisions.This Letter presents the measurement of near-side associated per-trigger yields, denoted ridge yields, from the analysis of angular correlations of charged hadrons in proton-proton collisions at s\sqrt{s} = 13 TeV. Long-range ridge yields are extracted for pairs of charged particles with a pseudorapidity difference of 1.4<Δη<1.81.4 < |\Delta\eta| < 1.8 and a transverse momentum of 1<pT<21 < p_{\rm T} < 2 GeV/cc, as a function of the charged-particle multiplicity measured at midrapidity. This study extends the measurements of the ridge yield to the low multiplicity region, where in hadronic collisions it is typically conjectured that a strongly-interacting medium is unlikely to be formed. The precision of the new results allows for the first direct quantitative comparison with the results obtained in e+e\mathrm {e^{+}e^{-}} collisions at s\sqrt{s} = 91 GeV, where initial-state effects such as pre-equilibrium dynamics and collision geometry are not expected to play a role. In the multiplicity range where the e+e\mathrm {e^{+}e^{-}} results have good precision, the measured ridge yields in pp collisions are substantially larger than the limits set in e+e\mathrm {e^{+}e^{-}} annihilations. Consequently, the findings presented in this Letter suggest that the processes involved in e+e\mathrm {e^{+}e^{-}} annihilations do not contribute significantly to the emergence of long-range correlations in pp collisions
    corecore