299 research outputs found

    Unique type of isolated cardiac valvular amyloidosis

    Get PDF
    BACKGROUND: Amyloid deposition in heart is a common occurrence in systemic amyloidosis. But localised valvular amyloid deposits are very uncommon. It was only in 1922 that the cases of valvular amyloidosis were reported. Then in 1980, Goffin et al reported another type of valvular amyloidosis, which he called the dystrophic valvular amyloidosis. We report a case of aortic valve amyloidosis which is different from the yet described valvular amyloidosis. CASE PRESENTATION: A 72 years old gentleman underwent urgent aortic valve replacement. Intraoperatively, a lesion was found attached to the inferior surface of his bicuspid aortic valve. Histopathology examination of the valve revealed that the lesion contained amyloid deposits, identified as AL amyloidosis. The serum amyloid A protein (SAP) scan was normal and showed no evidence of systemic amyloidosis. The ECG and echocardiogram were not consistent with cardiac amyloidosis. CONCLUSION: Two major types of cardiac amyloidosis have been described in literature: primary-myelomatous type (occurs with systemic amyolidosis), and senile type(s). Recently, a localised cardiac dystrophic valvular amyloidosis has been described. In all previously reported cases, there was a strong association of localised valvular amyloidosis with calcific deposits. Ours is a unique case which differs from the previously reported cases of localised valvular amyloidosis. In this case, the lesion was not associated with any scar tissue. Also there was no calcific deposit found. This may well be a yet unknown type of isolated valvular amyloidosis

    Counter-current chromatography for the separation of terpenoids: A comprehensive review with respect to the solvent systems employed

    Get PDF
    Copyright @ 2014 The Authors.This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Natural products extracts are commonly highly complex mixtures of active compounds and consequently their purification becomes a particularly challenging task. The development of a purification protocol to extract a single active component from the many hundreds that are often present in the mixture is something that can take months or even years to achieve, thus it is important for the natural product chemist to have, at their disposal, a broad range of diverse purification techniques. Counter-current chromatography (CCC) is one such separation technique utilising two immiscible phases, one as the stationary phase (retained in a spinning coil by centrifugal forces) and the second as the mobile phase. The method benefits from a number of advantages when compared with the more traditional liquid-solid separation methods, such as no irreversible adsorption, total recovery of the injected sample, minimal tailing of peaks, low risk of sample denaturation, the ability to accept particulates, and a low solvent consumption. The selection of an appropriate two-phase solvent system is critical to the running of CCC since this is both the mobile and the stationary phase of the system. However, this is also by far the most time consuming aspect of the technique and the one that most inhibits its general take-up. In recent years, numerous natural product purifications have been published using CCC from almost every country across the globe. Many of these papers are devoted to terpenoids-one of the most diverse groups. Naturally occurring terpenoids provide opportunities to discover new drugs but many of them are available at very low levels in nature and a huge number of them still remain unexplored. The collective knowledge on performing successful CCC separations of terpenoids has been gathered and reviewed by the authors, in order to create a comprehensive document that will be of great assistance in performing future purifications. © 2014 The Author(s)

    Social media usage for informal learning in Malaysia: academic researcher perspective

    Get PDF
    Social media (SM) has gained a huge acceptance from all and sundry. A huge potential exists for academic researchers in the use of SM for intellectual exercise. Informal learning (IL) has redefined the entire learning process, creating a new dawn from the formal learning rigid structures. However, there is lack of research on why some researchers fail to accept SM for IL. Therefore, the aim of this paper is to explore the use of SM for IL, barriers, benefits, and effect of individual factors. For this reason, a thorough literature review was conducted, and items were extracted from prior studies. Using a survey, a total of 170 responses were received from academic researchers using paper-based questionnaire. The authors discovered from the survey that lack of encouragement, lack of quality information, threat to research material are the barriers affecting SM use. Furthermore, they found that the benefits of using SM by academic researchers are to communicate with peers, share knowledge, and enhance collaboration. Thus, these findings will help stakeholders in encouraging the use of SM for IL

    Flexible Dielectric Nanocomposites with Ultrawide Zero-Temperature Coefficient Windows for Electrical Energy Storage and Conversion under Extreme Conditions

    Get PDF
    Polymer dielectrics offer key advantages over their ceramic counterparts such as flexibility, scalability, low cost, and high breakdown voltages. However, a major drawback that limits more widespread application of polymer dielectrics is their temperature-dependent dielectric properties. Achieving dielectric constants with low/zero-temperature coefficient (L/0TC) over a broad temperature range is essential for applications in diverse technologies. Here, we report a hybrid filler strategy to produce polymer composites with an ultrawide L/0TC window of dielectric constant, as well as a significantly enhanced dielectric value, maximum energy storage density, thermal conductivity, and stability. By creating a series of percolative polymer composites, we demonstrated hybrid carbon filler based composites can exhibit a zero-temperature coefficient window of 200 °C (from -50 to 150 °C), the widest 0TC window for all polymer composite dielectrics reported to date. We further show the electric and dielectric temperature coefficient of the composites is highly stable against stretching and bending, even under AC electric field with frequency up to 1 MHz. We envision that our method will push the functional limits of polymer dielectrics for flexible electronics in extreme conditions such as in hybrid vehicles, aerospace, power electronics, and oil/gas exploration.This work is supported by National Science Foundation of China (Grant Nos. 61006077, 61274123, 61425201, and 61474099), ZJ-NSF (LR12F04001). Y. Xu is supported by ZJU Cyber Scholarship and Cyrus Tang Center for Sensor Materials and Applications, and Visiting-by-Fellowship of Churchill College, University of Cambridge. T. Hasan is supported by The Royal Academy of Engineering (Graphlex)

    Use of smokeless tobacco among groups of Pakistani medical students – a cross sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Use of smokeless tobacco is common in South Asia. Tobacco is a major preventable cause of morbidity and mortality. Doctors make one of the best avenues to influence patients' tobacco use. However, medical students addicted to tobacco are likely to retain this habit as physicians and are unlikely to counsel patients against using tobacco. With this background, this study was conducted with the objective of determining the prevalence of smokeless tobacco among Pakistani medical students.</p> <p>Methods</p> <p>A cross sectional study was carried out in three medical colleges of Pakistan – one from the north and two from the southern region. 1025 students selected by convenient sampling completed a peer reviewed, pre-tested, self-administered questionnaire. Questions were asked regarding lifetime use (at least once or twice in their life), current use (at least once is the last 30 days), and established use (more than 100 times in their life) of smokeless tobacco. Chi square and logistic regression analyses were used.</p> <p>Results</p> <p>Two hundred and twenty (21.5%) students had used tobacco in some form (smoked or smokeless) in their lifetime. Sixty six (6.4%) students were lifetime users of smokeless tobacco. Thirteen (1.3%) were daily users while 18 (1.8%) fulfilled the criterion for established users. Niswar was the most commonly used form of smokeless tobacco followed by paan and nass. Most naswar users belonged to NWFP while most paan users studied in Karachi. On univariate analysis, lifetime use of smokeless tobacco showed significant associations with the use of cigarettes, student gender (M > F), student residence (boarders > day scholars) and location of the College (NWFP > Karachi). Multivariate analysis showed independent association of lifetime use of smokeless tobacco with concomitant cigarette smoking, student gender and location of the medical college.</p> <p>Conclusion</p> <p>The use of smokeless tobacco among medical students cannot be ignored. The governments should add the goal of eliminating smokeless tobacco to existing drives against cigarette smoking. Drives in Karachi should focus more on eliminating paan usage while those in NWFP should focus more on the use of naswar. Medical colleges should provide greater education about the myths and hazards of smokeless tobacco.</p

    Solvent-Based Soft-Patterning of Graphene Lateral Heterostructures for Broadband High-Speed Metal–Semiconductor–Metal Photodetectors

    Get PDF
    Solvents are essential in synthesis, transfer, and device fabrication of 2D materials and their functionalized forms. Controllable tuning of the structure and properties of these materials using common solvents can pave new and exciting pathways to fabricate high-performance devices. However, this is yet to be materialized as solvent effects on 2D materials are far from well understood. Using fluorine functionalized chemical vapor deposited graphene (FG) as an example, and in contrast to traditional “hard-patterning” method of plasma etching, the authors demonstrate a solvent-based “soft-patterning” strategy to enable its selective defluorination for the fabrication of graphene-FG lateral heterostructures with resolution down to 50 nm. In this strategy, the oxygen plasma etching process of patterning after graphene transfer is avoided and high quality surfaces are preserved through a physically continuous atomically thin sheet, which is critical for high performance photodetection, especially in the high-speed domain. The fabricated lateral graphene heterostructures are further employed to demonstrate a high speed metal–semiconductor–metal photodetector (<10 ns response time), with a broadband response from deep-UV (200 nm) to near-infrared (1100 nm) range. Thanks to the high quality surface with much less defects due to the “soft-patterning” strategy, the authors achieve a high deep-UV region photoresponsivity as well as the ultrafast time response. The strategy offers a unique and scalable method to realize continuous 2D lateral heterostructures and underscores the significance of inspiring future designs for high speed optoelectronic devices.This work is supported by National Science Foundation of China (Grant Nos. 61274123, and 61474099), ZJ-NSF (LR12F04001) and micro-/nano-fabrication platform of ZJU University, and the Fundamental Research Funds for the Central Universities

    How robust are value judgements of health inequality aversion? Testing for framing and cognitive effects

    Get PDF
    Background: Empirical studies have found that members of the public are inequality averse and value health gains for disadvantaged groups with poor health many times more highly than gains for better off groups. However, these studies typically use abstract scenarios that involve unrealistically large reductions in health inequality, and face-to-face survey administration. It is not known how robust these findings are to more realistic scenarios or anonymous online survey administration. Methods: This study aimed to test the robustness of questionnaire estimates of inequality aversion by comparing the following: (1) small versus unrealistically large health inequality reductions; (2) population-level versus individual-level descriptions of health inequality reductions; (3) concrete versus abstract intervention scenarios; and (4) online versus face to face mode of administration. Fifty-two members of the public participated in face-to-face discussion groups, while 83 members of the public completed an online survey. Participants were given a questionnaire instrument with different scenario descriptions for eliciting aversion to social inequality in health. Results: The median respondent was inequality averse under all scenarios. Scenarios involving small rather than unrealistically large health gains made little difference in terms of inequality aversion, as did population-level rather than individual-level scenarios. However, the proportion expressing extreme inequality aversion fell 19 percentage points when considering a specific health intervention scenario rather than an abstract scenario, and was 11-21 percentage points lower among online public respondents compared to the discussion group. Conclusions: Our study suggests that both concrete scenarios and online administration reduce the proportion expressing extreme inequality aversion but still yield median responses implying substantial health inequality aversion

    Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics.

    Get PDF
    Black phosphorus is a two-dimensional material of great interest, in part because of its high carrier mobility and thickness dependent direct bandgap. However, its instability under ambient conditions limits material deposition options for device fabrication. Here we show a black phosphorus ink that can be reliably inkjet printed, enabling scalable development of optoelectronic and photonic devices. Our binder-free ink suppresses coffee ring formation through induced recirculating Marangoni flow, and supports excellent consistency ( 30 days) oxidation. We demonstrate printed black phosphorus as a passive switch for ultrafast lasers, stable against intense irradiation, and as a visible to near-infrared photodetector with high responsivities. Our work highlights the promise of this material as a functional ink platform for printed devices.Atomically thin black phosphorus shows promise for optoelectronics and photonics, yet its instability under environmental conditions and the lack of well-established large-area synthesis protocols hinder its applications. Here, the authors demonstrate a stable black phosphorus ink suitable for printed ultrafast lasers and photodetectors

    A self-powered high-performance graphene/silicon ultraviolet photodetector with ultra-shallow junction: breaking the limit of silicon?

    Get PDF
    We present a self-powered, high-performance graphene-enhanced ultraviolet silicon Schottky photodetector. Different from traditional transparent electrodes, such as indium tin oxides or ultra-thin metals, the unique ultraviolet absorption property of graphene leads to long carrier life time of hot electrons that can contribute to the photocurrent or potential carrier-multiplication. Our proposed structure boosts the internal quantum efficiency over 100%, approaching the upper-limit of silicon-based ultraviolet photodetector. In the near-ultraviolet and mid-ultraviolet spectral region, the proposed ultraviolet photodetector exhibits high performance at zero-biasing (self-powered) mode, including high photo-responsivity (0.2 A W1^{-1}), fast time response (5 ns), high specific detectivity (1.6 × 1013^{13} Jones), and internal quantum efficiency greater than 100%. Further, the photo-responsivity is larger than 0.14 A W1^{-1} in wavelength range from 200 to 400 nm, comparable to that of state-of-the-art Si, GaN, SiC Schottky photodetectors. The photodetectors exhibit stable operations in the ambient condition even 2 years after fabrication, showing great potential in practical applications, such as wearable devices, communication, and “dissipation-less” remote sensor networks.This work is supported by National Science Foundation (DMR1508144), NSFC (Grant Nos. 61274123, 61474099, 61674127,and 61431014), and micro-fabrication/nano-fabrication platform of ZJU University, and the Fundamental Research Funds for the Central Universities (2016XZZX001-05). This work is also supported by ZJU Cyber Scholarship and Cyrus Tang Center for Sensor Materials and Applications, the Open Research Fund of State Key Laboratory of Bioelectronics, Southeast University, the Open Research Fund of State Key Laboratory of Nanodevices and Applications at Chinese Academy of Sciences (No.14ZS01), and Visiting-by-Fellowship of Churchill College at University of Cambridge
    corecore