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A self-powered high-performance graphene/silicon ultraviolet
photodetector with ultra-shallow junction: breaking the limit

of silicon?
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We present a self-powered, high-performance graphene-enhanced ultraviolet silicon Schottky photodetector. Different from
traditional transparent electrodes, such as indium tin oxides or ultra-thin metals, the unique ultraviolet absorption property of
graphene leads to long carrier life time of hot electrons that can contribute to the photocurrent or potential carrier-multiplication.
Our proposed structure boosts the internal quantum efficiency over 100%, approaching the upper-limit of silicon-based ultraviolet
photodetector. In the near-ultraviolet and mid-ultraviolet spectral region, the proposed ultraviolet photodetector exhibits high
performance at zero-biasing (self-powered) mode, including high photo-responsivity (0.2 AW™"), fast time response (5 ns), high
specific detectivity (1.6 x 10" Jones), and internal quantum efficiency greater than 100%. Further, the photo-responsivity is larger
than 0.14 AW in wavelength range from 200 to 400 nm, comparable to that of state-of-the-art Si, GaN, SiC Schottky
photodetectors. The photodetectors exhibit stable operations in the ambient condition even 2 years after fabrication, showing
great potential in practical applications, such as wearable devices, communication, and “dissipation-less” remote sensor networks.
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INTRODUCTION

Ultraviolet (UV) photodetectors could find a wide range of
applications,'® such as environmental monitoring,®> biological
and chemical analysis,* flame detection,” astronomical studies?
internet-of-things sensors,” and missile detection.'® Recently, wide
band-gap (WBG) semiconductors (SiC,"’ GaN,'? ZnO,"® TiOy,'* etc.)
have emerged as the candidates for UV photodetection, due to
their high-strength chemical bonding structures and visible-
blindness.'” '®  However, the performance of WBG
semiconductor-based detectors is limited by relatively low-
quality oxide layer and high surface states/defects,'> which causes
slow recovery of photocurrent, hindering the practical applications
for high-speed UV detection.

Silicon is a widely-used semiconductor material for UV detectors
owing to its suitable bandgap, low-density surface states, high
reliability, matured manufacturing, and high-speed detection.'”*'
However, in the UV region, silicon photodetectors face the major
challenge of low photo-responsivity (typically, less than 0.1 AW™"
for A<400nm) due to high reflection coefficient and shallow
penetration depth of UV light in silicon. For example, a typical

silicon PN junction depth (X)) is larger than 200 nm.**> As the
penetration depth of UV light in Si is less than 20 nm for A < 370
nm,?®> the photo-generated carriers are primarily near the Si
surface and need to diffuse (~100 nm scale) into the junction
region, resulting in significant carrier recombination and hence
limiting the performance. Recently, techniques, such as delta
doping are proposed to make shallow junction.>*?’ The dead
layer for mid-UV/far-UV absorption is still unavoidable. It was
reported that the inversion-enhanced Si PN junction photodetec-
tor using fixed charges within oxide layer could alleviate the dead-
layer problem, but the charges in oxide have stability issues.?® In
order to obtain high-performance silicon UV detectors, an ultra-
shallow junction with charge separation/collection efficiency at
fast-operating speed are required. Semi-transparent metal/Si
Schottky structures can only partially satisfy the requirement, as
a large proportion of UV light is reflected or absorbed by metal
layer without contributing to the photocurrent, resulting in low
photo-responsivity.?®

Graphene (Gr), a single-layer of carbon sheet, exhibits excellent
electronic conductivity?®>' and optical transmittance®** with
great potential to replace metals as transparent electrodes.>*™*?
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Gr/Si structures have been studied in solar cells,*® 3% 3° as well as,

visible and INR photodetectors,*” **™*® showing excellent
performances. Ultra-shallow (essentially, zero X)) Gr/Si Schottky
structure could be more suitable for UV detection, because it not
only resolves the serious surface recombination due to the shallow
junction satisfying the UV light penetration depth in Si, but
also simplifies the fabrication process to reduce the cost.
In addition, graphene also has a thermal conductivity as
high as 20Wcm ™K™', ten times larger than that of silicon
(1.5Wem™ K™, which can effectively facilitate fast heat dissipa-
tion and improve the local phonon-induced temperature stability
when working at long-time UV exposure mode.

Here, we present a graphene-enhanced Si Schottky photo-
detector for high-speed UV detection (photocurrent response with
a falling-time of ~5ns and wavelength range of 200 ~400 nm).
Due to the semi-metallic property of graphene, a shallow Schottky
junction is formed between graphene and Si. The depletion region
with the maximum built-in electrical field is at the Gr/Si interface,
which is beneficial to fast separation of the photo-generated
electron-hole (e-h) pairs without application of any external bias,
making the photodetectors self-powered. Furthermore, as com-
pared with the commonly used transparent electrodes (e.g.,
indium tin oxide (ITO)'? and ultra-thin metals), graphene exhibits
long lifetime of photo-induced hot carriers especially in the UV
wavelength range. These hot carriers contribute to photocurrent
in graphene and result in higher internal quantum efficiency (IQE),
which facilitates to break through the upper-limit of traditional
silicon UV photodetector. The stability and responsivity of Gr/Si UV
photodetector after employing an Al,Oz anti-reflection layer are
further improved. The experimental work demonstrates the proof-
of-concept of Gr/Si UV photodetector, paving the way towards the
next-generation ultra-low-power, high-performance, and cost-
effective UV photodetectors targeting at a broad spectrum of
emerging applications.

RESULTS

Figure 1a-d shows the schematic structure of a Gr/Si UV
photodetector, the SEM cross-sectional view, the photograph of
a packaged 6 x 6 device array, and the microscope image of one
device, respectively. There is a thin (~2 nm) native SiO, between
graphene and silicon to depress the dark current, without
affecting the photocurrent.*' Gr is observed to conformably cover
the Si window, demonstrating that graphene contacts well with Si
substrate. The Gr/Si photodetector arrays were fabricated using
the complementary metal oxide semiconductor-compatible tech-
nology. As shown in Fig. e, the Raman spectra of the transferred
graphene layer on SiO, and Si show signature peaks, i.e., the G
peak at 1581 cm™" and the 2D peak at 2688 cm™'. The D peak at
1350cm™" has a very weak intensity, indicating the high quality
chemical vapor deposition (CVD)-grown graphene. The intensity
of Raman spectrum for the graphene on SiO, is larger than that on
Si. Figure 1f shows the absorption of monolayer graphene and
silicon. For silicon, the absorption coefficient (a=4mk/A) is very
high for UV light (~10® m™", wavelength A < 400 nm), which leads
to low penetration depth (/=1/a) of incident light and low
responsivity for typical PN junction-based photodetectors. For
monolayer graphene, there is an absorption peak in UV spectrum
(around 265 nm) with peak intensity of ~10%. The UV absorption
peak in graphene is originated from inter-band transition from the
bonding to the anti-bonding m states near the saddle-point
singularity at the M-point of the Brillouin zone.*® The absorption of
UV light in graphene also contributes to the photocurrent, which
will be discussed in the following section.

Figure 2a shows the dark current density (Jgan) and the
photocurrent density (Jon) as voltage (V) varies from —1.0 to 0.5V,
exposure under a beam of 365 nm UV light with incident power
(Pin) of 0.1 MW cm™. The J-V characteristics of a Schottky diode

npj 2D Materials and Applications (2017) 4

using Landauer transport formalism with Crowell-Sze approach for
thermionic emission and carrier diffusion over a barrier is given
by43' 44

J= FT& (ksT)? (/:Tbr + 1)} exp (f\fxé - keTbr)

o8 |

where e being the elementary charge, Do = 2/[m(Aive)?] the density
of states of graphene, h the reduced Planck’s constant, v¢ the
Fermi velocity in graphene, 1, represents the injection rate of
carriers from the silicon contact to graphene, and is related to the
silicon-graphene and metal-graphene coupling energy. kg the
Boltzmann constant, T the absolute temperature, @, being the
Schottky barrier, x the average barrier height, & the oxide
thickness, V the voltage applied across the diode, R, the series
resistance and n the ideality factor. The ideality factor n and
Schottky barrier @, can be extracted from the forward J-V
characteristics. Through fitting the formula (1), values of n, @, and
T; are extracted to be 1.2, 0.7 eV, and 24 x 107 ""s, respectively,
suggesting the good quality of Gr/Si Schottky junction. We did not
use the effective Richardson constant to describe the Gr/Si
Schottky junction, because the traditional Richardson constant A*
overestimates the thermionic dark current of graphene/silicon
Schottky junction without considering the finite density of states
of graphene, which should be better accounted by using the
Landauer formula.

The photo-responsivity [R = (Uph—Jdard/Pin] is one of the
important parameters to characterize the properties of
light sensing. For our Gr/Si UV photodetector, J,,, and Jy,n are
12puAcm™ and 0.1 nAcm™ (under vacuum) at zero-bias (self-
powered) mode, respectively, leading to R, =0.12 AW™" at 365 nm
UV light. The responsivity and dark current density are comparable
to the-state-of-art compound semiconductor Schottky photode-
tectors such as GaN (R ~0.10 AW™", Jyar ~ 500 nA cm~2) and SiC
(Ri~0.03AW™", Jyak~025nAcm™2) (see refs 1-8). The dark
current density of our Gr/Si photodetector is smaller than the
typical metal-semiconductor Schottky photodetectors owing to
the finite density of states of 2D materials and smaller electronic
injection ratio from silicon to graphene, as compared with the
traditional metal-semiconductor contact. The smaller dark current
density helps to improve the detectivity and signal-to-noise ratio.

The working principle of the UV Gr/Si photodetector can be
understood through the band diagram, as shown in Fig. 2b. When
graphene is transferred onto the Si substrate, a depletion region
with a Schottky barrier height (Jy) is formed between the
graphene and Si. When the Gr/Si photodetector is illuminated by a
UV beam, part of the light is absorbed in graphene at the M-point
and K -point of the Brillouin zone. Absorbing photons, the hot
carriers undergo different thermal relaxation processes. The
photo-excited electrons at the M-point and K-point may have
carrier soft-multiplication (in femtosecond scale), subsequently
cross the Schottky barrier through internal photoemission (in
picosecond scale), and finally be collected by the electrodes (in
nanosecond scale).>®™2 These hot electrons after multiplication in
graphene are collected by the Si substrate, which contribute to
the total photocurrent. Most of the incident UV light penetrates
through graphene and enter the Si depletion region. UV light has
large absorption coefficient in Si, which leads to the penetration
depth of less than 20 nm for incident wavelength shorter than
370 nm (Supplementary Fig. S1). Hence the majority of photo-
generated carriers are located near the Si surface. The ultra-
shallow Gr/Si Schottky junction is highly efficient in separating the
photo-generated e-h pairs.

The depletion region width (W = [2g0&(Vyi — Vi)/(eNg)]'?) of the
Schottky junction is ~0.2 um for a built-in potential (V},;) of 0.5V
with an applied voltage (V;,) of 0.0V and a doping concentration
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a The schematic view of the Gr/Si UV photodetector coated with an Al,O; anti-reflection layer. Edge and top metal contacts for

graphene are used to reduce the contact resistance of the devices, which is crucial for high speed photodetectors. b The SEM cross-section
view of the Gr/Si photodetector. ¢ The photograph of the packaged 6 x 6 array devices for characterization. d The microscope image of one
photodetector before the deposition of Al,O5 anti-reflection layer. The device active area is 500 x 500 um?2 e The Raman spectrum of
graphene on SiO, and Si substrate. f The absorption (%) of a single layer graphene on quartz substrate and the absorption coefficient (a) of Si

(Ng) of 40x 10" cm™ in the studied photodetector. The value of
W is much larger than the penetration depth / (~20 nm) of UV
light, thus most of the hot carriers induced by UV light are in the
depletion region. The direction of the built-in electric field (Epyiit-in)
is pointing from Si to graphene. The maximum field (Ey) is at the
Si surface with a value of ~ 7.8 x 10° V/m at zero bias. Here, E(x) =
Em — [eNp/(g0€))1x, (0 < x < W). Therefore, the e-h pairs from Si can
be effectively separated by high Epiwin to form photocurrent. In
the Gr/Si photodetector with ultra-shallow junction, the photo-
current is from both graphene and Si. Furthermore, hot-electron
multiplication in both graphene and Si result in high photo-
responsivity and IQE.

Figure 2c shows the photocurrent density (J,) vs. biasing
voltage (V) characteristics, illuminated by 365nm laser
with incident power (P,,) varying from 0.01 to 1.0 mWcm™
The Jyp increases with the incident power. No hysteresis effect
in J-V curves was observed in our device, indicating a clean
Gr/Si interface without significant trapping charges. The photo-
current density reaches a saturation value at V,,=0.0V and P;, of
1.0mWcm™, which manifests that the built-in field is strong
enough to separate most of the e-h pairs generated. Figure 2d

Published in partnership with FCT NOVA with the support of E-MRS

depicts Jpn as a linear function of Pj, at zero-bias (self-powered)
mode. Due to excellent linearity of the Gr/Si photodetector, the
photo-responsivity is approximately the same for different P,
even at high incident power. The response linearity independent
on incident power is critical for many practical applications. As
shown in Fig. 2d, photovoltage (V,.) increases from 0.2 to 0.3V, as
P, increases from 0.01 to 1.0 mW cm™2. The photovoltage does
not exhibit linear response to incident power, which could be
explained by the quasi-Fermi level transport model, including
surface recombination mechanism.>*

To understand how fast the Gr/Si UV photodetectors “switch”
upon turning on or off the incident light, the response time (1) has
been examined, as shown in Fig. 3a, b. The photocurrent appears
periodically, when illuminated under a 375 nm periodic picose-
cond pulsed laser (Fig. 3a). From the single pulse response for the
device with an effective active area S=0.25 mm?, the rise time
(from 10 to 90% of the peak photocurrent)® is estimated to be ~4
ns, while the decay time (from 90 to 10% of the peak
photocurrent) is ~12 ns (Supplementary Fig. S2). When the area
S are reduced from 0.25 to 0.0225 mm?, the rise and decay times
decrease to ~2 and ~5ns, respectively (Fig. 3b). The ultra-fast
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Fig. 2 a The current density vs. voltage (J-V) characteristics of the graphene/Si Schottky junction in darkness and under illumination of 365
nm UV light. The effective area is 0.25 mm? b The energy band diagram of the graphene/Si photodiode. ¢ The J-V characteristics of the Gr/Si
photodiode under 365 nm UV irradiance with different incident powers. d The photocurrent density (Jyn) as a linear function of incident
power (P;,), at V,, = 0.0V (self-powered) mode. Also shown is the relation of photovoltage (V) with P;,

response can be understood through analyzing the components
of response time, T =Tq¢ + Ty, + T, Where Tg¢, Tqr and T are
carrier diffusion time from generated area to junction region, drift
time in the junction region, and parasitic circuit time constant,
respectively.”® Due to atomic layer thickness and high mobility of
graphene, the diffusion time in graphene 14i(Gr) is estimated to
be less than 1 ps. As the UV light penetration depth / is much less
than the depletion region width W, 14i(Si) in Si substrate for UV
light can also be neglected according to Tqi¢=d*/(2D.) and d~0,
where d is the diffusion length and D is the diffusion coefficient.
The drift time in depletion region 14, is estimated to be only ~2 ps
at 0V by using the relation 14, = W/vg,, where v, is the saturated
velocity (~10° ms™). It should be noted that the intrinsic response
time of Gr/Si UV detector would be less than 5 ps based on the
above calculations without considering the external RC circuit. To
the best of our knowledge, this is one of the shortest decay time
reported for non-waveguide Gr/Si UV photodetectors.>” % We
believe that the response time of the Gr/Si UV photodetector is
largely limited by the circuit time constant T~ R,C, where R; is the
serial resistance and C is the total parasitic capacitance. We use
R,~200Q as derived from the forward J-V curve, and the
measured C is 16 pF for an effective junction area of 0.0225 mm?
at V,=0.0V. Thus, 7. is calculated to be ~3.2ns, close to the
experimentally measured decay time. The response time has large
room to be improved by device structure optimizing to reduce
parasitic resistance (e.g., using edge-contact for graphene)®® and
capacitance. The Gr/Si UV photodetector has demonstrated
advantages for high-speed operations, attributed to the ultra-
shallow Schottky junction, with the intrinsic response time at
picosecond scale.

Specific detectivity D'(=R,S"%/(2el4an)’?) describes the smallest
detectable signal of the photodetector.*' The calculated D" of
the Gr/Si photodetector is based on the measured results of a

npj 2D Materials and Applications (2017) 4

0.25 mm? device. As shown in Fig. 3¢, both specific detectivity and
ON/OFF ratio decrease with increasing reverse bias, resulted from
the increased dark current at high V, with photocurrent
unchanged. In order to improve D" and ON/OFF ratio, one should
minimize the dark current. For the Gr/Si detector, dark current
could be reduced in vacuum in which the surface-generated
current due to absorption of water, oxygen, and other ambient
gases on graphene-silicon interface is suppressed. In Supplemen-
tary Fig. S3, it is seen that D" increases from 6.1 x 10'? Jones (air) to
1.6 x 10" Jones (vacuum), and ON/OFF ratio increases from 1.6 x
10° (air) to 1.2 x 10° (vacuum) at zero-bias (self-powered mode)
and P;, = 1.0 cm™2 The ON/OFF ratio further increases to 1.1 x 10®
(vacuum) with P, =100 mW cm™2.

Linear dynamic range (LDR, typically quoted in dB) is another
important figure-of-merit to evaluate photodetectors. The LDR® is
obtained from the equation LDR=20log (*on/lgark), Where gy, is
the photocurrent measured at P, =1 mW cm™2. Figure 3d shows
LDR and IQE for wavelength from 200 to 1100 nm at V,,=0V. The
LDR (119 dB) and IQE (>98%) at 365 nm indicate a relatively large
photocurrent-to-dark current ratio and a high signal-to-noise ratio,
demonstrating that ultra-shallow Gr/Si Schottky junction is
effective to convert UV light into photocurrent. IQE > 100% from
200 to 300 nm wavelength region is also obtained. It is worth
pointing out that Gr/Si Schottky photodetector does not have a
high UV-to-visible reject ratio because of the visible-absorption
properties of Si. To improve the reject ratio, one approach is to use
Gr on silicon-on-insulator (SOI) substrate, taking advantages of
ultra-thin silicon. For example, the characteristic absorption depth
in silicon for visible (570 nm) and UV (365 nm) are about 1 um and
10 nm, respectively. Considering the quantum efficiency and
effective total absorption in ultra-thin SOI substrate (<20 nm), we
can expect an UV-to-visible reject ratio of ~10° by using the
silicon absorption coefficient. Although it is still lower than the UV-
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Fig. 3 a Multi-cycle photocurrent responses to pulsed picoseconds UV laser with a wavelength of 375 nm, at V},=0.0 V. A short time delay is
observed between the electric pulses and laser pulses due to parasitic effect in the external circuit made of the power cable and trans-
impedance amplifier connected to Oscilloscope for on-screen display. The effective area is 0.25 mm?. b The respond time of Gr/Si
photodetectors with different active areas of 0.0225 and 0.25 mm? at ambient condition. ¢ The specific detectivity D" and ON/OFF ratio of the
Gr/Si photodetector (in vacuum) under reverse bias from 0.0 to —1.0 V. d The LDR and IQE behavior of Gr/Si photodetector over the range of
incident light spectra (200-1100 nm) at V}, = 0.0 V. IQE > 100% is observed at the wavelength region of 200 to 300 nm

to-visible rejection ratio (~10) in SiC and GaN, it is good enough
for many practical applications.

In order to reduce the high UV reflection at Si surface, an anti-
reflection layer is needed. Al,Os is a transparent material without
absorbing photons of wavelength larger than 200 nm, hence is
suitable as the anti-reflection layer for UV light' A 40 nm-thick
Al,O3 film is coated on the Gr/Si detector to generate quarter-
wavelength interference. The reflectance with and without Al,O3
antireflection layer is shown in Fig. 4a. The reflectance drops
dramatically in the UV range, reaching the minimum of 24% at
around 320 nm. As shown in Fig. 4b, the active area coated with
Al,O3 appears to be black, indicating reduced reflection at the
top-surface of the device.

Figure 4c compares the J-V curves of the Gr/Si photodetector
(labeled as D1) and the Al,O3/Gr/Si photodetector (labeled as D2).
With Al,Os coating, photocurrent density increases to 0.02 mA
cm™?, illuminated by 365nm UV light with P, of 0.1 mWcm™,
which is nearly 1.7 times higher than that without antireflection
layer. The deposition of the Al,O; layer may also facilitate
conformal coverage of graphene on silicon surface, reducing
inhomogeneity of the Gr/Si Schottky junction. This has been
illustrated by the ideality factor of Schottky junction, improving
from 1.2 to 1.05 after Al,O; deposition. The incident photon
conversion efficiency (IPCE) of D2 is boosted to 83, 75, and 68% at
A =200, 340, and 365 nm, respectively (Fig. 4d). The IPCE of D2 is
higher than that of the reported photodetectors using TiO,%? or
porous Si® thin film to enhance UV light absorption. The Gr/Si
photodetectors with Al,O3 remains stable in device behavior even
after 2 years, showing the great potential for practical applications
(see Supplementary Fig. S4).

As shown in Fig. 4e, the photo-responsivity R, of D2 increases from
0.12 to 020AW' at A=365nm and from 0.07 to 0.14 AW at A=
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254 nm after deposition of Al,Oz antireflection layer. The relative
change of R, is larger in UV region than that in visible region,
indicating that the Al,Os film thickness is suitable for antireflection.
The Al,03/Gr/Si device is advantageous, as compared with the state-
of-the-art UV-enhanced Si photodetector (0.09 AW™" at 254 nm,
$1226-BQ in Hamamatsu Photonics Company).%* Figure 4f shows
the UV spectral photo-responsivity of D1, D2, Gr/Si photodetector
with 6 layers graphene (labeled as D3) and the theoretically
predicated responsivity with and without reflection (R).>> The
spectral responsivity of D1 (A> 240 nm) is close to the theoretical
value with reflection (blue line), which means that nearly all the
absorbed UV light in graphene and Si are converted into
photocurrent. The responsivity at A <300nm is higher than the
theoretical value with reflection, possibly resulted from hot-electron
multiplication and its cascade effects. The spectral responsivity of D2
is closed to the upper-limit without reflection (red line), demonstrat-
ing that Al,Os layer is suitable for UV anti-reflection. By comparing
the responsivity of monolayer and multilayer (6L) graphene
photodetectors (D1 and D3), the photoresponsivity increases with
the layer number of graphene, indicating graphene facilities multi-
carrier generations in the UV region, a major advantage over the
traditional Si-based photodetector.

Supplementary Table S1 shows the comparison of UV photo-
detectors based on different working principles such as Schottky
junction, PN junction, and photoconductive gain (reported in the
literatures), as well as some commercial UV photodetectors. The
dark current density (0.1nAcm™) at zero-bias (self-powered)
mode is significantly lower than that of wide-bandgap semicon-
ductor detectors. It is clear that Gr/Si UV photodetector shows
overall improved performance. Although showing a lower
responsivity than that of photoconductive devices, Gr/Si UV
detector exhibits a much larger ON/OFF ratio (Ron/0f) and faster
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response which are key to many practical applications. The Gr/Si
UV photodetector does not involve complex shallow-junction
doping process, which is practically favorable as compared with
the UV enhanced P*N/Si detectors. Furthermore, the measured
photo-responsivity is greater than 0.14 AW™' within the whole
mid-UV region and near-UV region (200 ~ 400 nm) with ultra-fast
rising and falling response times (<5ns), demonstrating its
strength comparable to the-state-of-art GaN, SiC, and other
compound semiconductor based Schottky photodetectors (see
Supplementary Table S1 for details).

In conclusion, a graphene-enhanced silicon UV photodetector
with Al,O3 anti-reflection layer has been demonstrated. The ultra-
shallow junction at the Gr/Si interface, along with high built-in
electric field, helps to rapidly separate the e-h pairs and reduce
surface recombination. Hot electrons generated in graphene also
contribute to photocurrent. The anti-reflection layer promotes UV
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absorption, improving the device performance. In the demonstra-
tion, the Gr/Si UV photodetector shows superior performance in
terms of high responsivity (>0.14 AW™", from 200 to 400 nm), fast
response (falling time < 5 ns), large ON/OFF ratio (1.2 x 106 at Pin =
1.0 mW cm™ and A = 365 nm), high IQE (>100%, from 200 to 300
nm), and high detectivity (1.6 x 10" Jones in vacuum). The overall
UV-sensing performance is comparable to the-state-of-art of Si,
GaN, and SiC photodetectors. The high performance and long-
term stability suggest that graphene-enhanced silicon Schottky
diode is suitable for practical applications. Since Si-based
avalanche photodetectors and single-photon detectors are
already well developed, the Gr/Si photodetector, if operating in
Geige working mode, may be able to detect single photons under
avalanche gain mechanism. The ultra-shallow junction design
could potentially extend to applications in detecting deep UV,
extreme UV, or even soft X-ray due to the stability of graphene

Published in partnership with FCT NOVA with the support of E-MRS



protected by Al,Os,
radiations.

when exposing to short-wavelength

METHODS
Device fabrication

The device was fabricated on a commercially available lightly-doped n-
type Si wafer with a 300 nm SiO, layer. (1) Top metal electrode: The SiO,
layer was patterned by photolithography. Then the e-beam deposition and
thermal evaporation (Angstrom Engineering) processes were used to
deposit Cr/Au film as the contact pads onto SiO,. The thicknesses of the Cr
and Au were 5 and 100 nm, respectively. (2) Si window: After lifting-off and
cleaning, a photolithography was used to pattern windows with the sizes
of 500500 and 150 x 150 um?. SiO, in the window was subsequently
etched away by using a buffered oxide etchant, where the n-type silicon
was exposed for the graphene/Si Schottky-junction fabrication. The
backside oxide of the wafer was also etched simultaneously during this
process. Then the wafer was exposed to the air for 3 h to form a native SiO,
thin film and subsequently diced with an area of about 1x 1 cm?. (3) Gr
transfer: To make the Gr/Si Schottky junction, graphene was transferred
onto the surface of the processed Si substrate. The CVD-grown graphene
on a copper foil (ACS Materials) was first spin-coated with polymethyl-
methacrylate (PMMA) (ALLRESIST AR-26, speed =5000 rpm, time =60s).
The copper foil was then dissolved in a CuSO,4 + HCl + H,0 solution (CuSO4:
HCI:H,0=10g:50 mI:50ml) for 3h and in deionized water for 8 h. The
PMMA-coated graphene film was then transferred onto the top of Si wafer
covering the window and the metal pad. The PMMA was removed by
acetone and cleaned by IPA. (4) Patterning: The device was further
patterned by lithography, and graphene outside the Au/Cr top electrode
was removed by oxygen plasma. Additional metal was deposited to reduce
the contact resistance between graphene and metal electrode. (5) Al,O3
deposition: After photolithograph process, Al,O5 thin film was deposited
by e-beam evaporation as anti-reflection layer. The thickness of Al,Os is
~40 nm. Photoresist was then removed by cleaning in acetone and IPA. (6)
Bottom metal electrode: After Al,Oz thin film was patterned, Ohmic
contact with Si was made. Finally, wire bonding was used to connect the
top electrode with Au wires and packaging for high speed measurement.

Characterizations and measurements

SEM: A scanning electron microscope (S3400N) was used to characterize
the Gr/Si photodetector. Raman spectroscopy: Raman spectroscopy of
graphene on SiO, and Si substrate was conducted using RENISHAW
RM2000 with a 532 nm laser and a 50x objective. Optical transmittance
and reflectance: Transmittance of monolayer graphene and reflectance of
devices covered with and without Al,O3 thin film were measured by an
UV-Visible-IR Spectrophotometer (UV-3150). I-V: The [-V curves were
measured with Agilent Semiconductor Analyzer B1500. Lasers with
different UV wavelengths were used to illuminate photodetectors.
Different incident power can be tuned. IPCE: The IPCE of devices were
measured with QEX10 Solar Cell Quantum Efficiency Measurement System.
Response time: The device and the trans-impedance amplifier (DHPCA-100,
made by Germany FEMTO) were connected in a circuit. Periodic pulse
lasers (Edinburgh Instruments Ltd., EPL-Series, 335 and 375 nm, 200 ps rise/
fall time, 20 MHz of pulse period) were used as the light source. The output
voltage of the trans-impedance amplifier was measured with an
oscilloscope (Agilent DSO 9404A, 4 GHz bandwidth). The rise time of the
trans-impedance amplifier was as low as 1.8 ns. The delay time of the
oscilloscope was shorter than the trans-impedance amplifier and our
devices. Therefore, the whole delay time of the system was no more than
2.5 ns. Based on the photocurrent signal, the decay time between 90 and
10% of the peak current was set as the fall time. Spectral R;: The spectral R,
was deduced from IPCE, according to R, =IPCEx (g\hc). IPCE was
measured with QEX10 Solar Cell Quantum Efficiency System.
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