965 research outputs found

    The Choice to Limit Choice: Using Psychiatric Advance Directives to Manage the Effects of Mental Illness and Support Self-Responsibility

    Get PDF
    Psychiatric advance directives are a valuable tool for individuals with mental illnesses. Ulysses directives, in particular, allow individuals to bind themselves to treatment in advance of needing it for the purpose of overcoming illness-induced refusals. This Note evaluates the effectiveness of state advance directive statutes in three areas that are especially important for Ulysses directives: defining competency to execute, activate, and revoke directives; waiving the constitutional right to refuse treatment; and encouraging provider compliance. This Note ultimately advocates for other states to adopt provisions similar to a Washington State statute. The Washington statute authorizes Ulysses directives by allowing advance consent to treatment, establishing a mechanism for overriding refusals, and permitting irrevocability, but it also provides flexibility so that individuals can craft a personalized plan for their needs

    Characterizing Potentials by a Generalized Boltzmann Factor

    Full text link
    Based on the concept of a nonequilibrium steady state, we present a novel method to experimentally determine energy landscapes acting on colloidal systems. By measuring the stationary probability distribution and the current in the system, we explore potential landscapes with barriers up to several hundred \kT. As an illustration, we use this approach to measure the effective diffusion coefficient of a colloidal particle moving in a tilted potential

    Quantification of Cell Movement Reveals Distinct Edge Motility Types During Cell Spreading

    Get PDF
    Actin-based motility is central to cellular processes such as migration, bacterial engulfment, and cancer metastasis, and requires precise spatial and temporal regulation of the cytoskeleton. We studied one such process, fibroblast spreading, which involves three temporal phases: early, middle, and late spreading, distinguished by differences in cell area growth. In these studies, aided by improved algorithms for analyzing edge movement, we observed that each phase was dominated by a single, kinematically and biochemically distinct cytoskeletal organization, or motility type. Specifically, early spreading was dominated by periodic blebbing; continuous protrusion occurred predominantly during middle spreading; and periodic contractions were prevalent in late spreading. Further characterization revealed that each motility type exhibited a distinct distribution of the actin-related protein VASP, while inhibition of actin polymerization by cytochalasin D treatment revealed different dependences on barbed-end polymerization. Through this detailed characterization and graded perturbation of the system, we observed that although each temporal phase of spreading was dominated by a single motility type, in general cells exhibited a variety of motility types in neighboring spatial domains of the plasma membrane edge. These observations support a model in which global signals bias local cytoskeletal biochemistry in favor of a particular motility type

    Probing live cells with optically driven and monitored micro-rotors

    Get PDF
    Optically trapped particles can be used as probes to study the mechanical properties of substances on a microscopic scale. Such experiments have been performed on colloids, single bio-molecules such as DNA and proteins, and components of living cells. A particularly promising type of probe particle is the micro-rotor - an optically trapped and powered microscopic rotating particle. Such a probe allows steady-state motion, and is ideal for the measurement of viscosity on a microscopic scale. The change in polarisation of the trapping beam due to scattering by the probe particle can be used to measure the optical torque acting on, and the rotation of, the probe particle. We present results from experiments showing that it is possible to rotate small calcite crystals adhering to the membrane of a cell in vitro, and measure the applied torque and rotation speed

    5 Years After Tragedy: An Update on Organ Procurement Travel in Michigan

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/100335/1/ajt12399.pd

    Movement of scallop myosin on Nitella actin filaments: regulation by calcium.

    Full text link

    Dynamic Phase Transitions in Cell Spreading

    Full text link
    We monitored isotropic spreading of mouse embryonic fibroblasts on fibronectin-coated substrates. Cell adhesion area versus time was measured via total internal reflection fluorescence microscopy. Spreading proceeds in well-defined phases. We found a power-law area growth with distinct exponents a_i in three sequential phases, which we denote basal (a_1=0.4+-0.2), continous (a_2=1.6+-0.9) and contractile (a_3=0.3+-0.2) spreading. High resolution differential interference contrast microscopy was used to characterize local membrane dynamics at the spreading front. Fourier power spectra of membrane velocity reveal the sudden development of periodic membrane retractions at the transition from continous to contractile spreading. We propose that the classification of cell spreading into phases with distinct functional characteristics and protein activity patterns serves as a paradigm for a general program of a phase classification of cellular phenotype. Biological variability is drastically reduced when only the corresponding phases are used for comparison across species/different cell lines.Comment: 4 pages, 5 figure

    Cell adhesion and cortex contractility determine cell patterning in the Drosophila retina

    Full text link
    Hayashi and Carthew (Nature 431 [2004], 647) have shown that the packing of cone cells in the Drosophila retina resembles soap bubble packing, and that changing E- and N-cadherin expression can change this packing, as well as cell shape. The analogy with bubbles suggests that cell packing is driven by surface minimization. We find that this assumption is insufficient to model the experimentally observed shapes and packing of the cells based on their cadherin expression. We then consider a model in which adhesion leads to a surface increase, balanced by cell cortex contraction. Using the experimentally observed distributions of E- and N-cadherin, we simulate the packing and cell shapes in the wildtype eye. Furthermore, by changing only the corresponding parameters, this model can describe the mutants with different numbers of cells, or changes in cadherin expression.Comment: revised manuscript; 8 pages, 6 figures; supplementary information not include
    • …
    corecore