We monitored isotropic spreading of mouse embryonic fibroblasts on
fibronectin-coated substrates. Cell adhesion area versus time was measured via
total internal reflection fluorescence microscopy. Spreading proceeds in
well-defined phases. We found a power-law area growth with distinct exponents
a_i in three sequential phases, which we denote basal (a_1=0.4+-0.2), continous
(a_2=1.6+-0.9) and contractile (a_3=0.3+-0.2) spreading. High resolution
differential interference contrast microscopy was used to characterize local
membrane dynamics at the spreading front. Fourier power spectra of membrane
velocity reveal the sudden development of periodic membrane retractions at the
transition from continous to contractile spreading. We propose that the
classification of cell spreading into phases with distinct functional
characteristics and protein activity patterns serves as a paradigm for a
general program of a phase classification of cellular phenotype. Biological
variability is drastically reduced when only the corresponding phases are used
for comparison across species/different cell lines.Comment: 4 pages, 5 figure