6 research outputs found

    Modulation of drug resistance by artificial transcription factors

    No full text
    The efficiency of chemotherapeutic treatments in cancer patients is often impaired by the acquisition of drug resistance. Cancer cells develop drug resistance through dysregulation of one or more genes or cellular pathways. To isolate efficient regulators of drug resistance in tumor cells, we have adopted a genome-wide scanning approach based on the screening of large libraries of artificial transcription factors (ATFs) made of three and six randomly assembled zinc finger domains. Zinc finger libraries were linked to a VP64 activation domain and delivered into a paclitaxel-sensitive tumor cell line. Following drug treatment, several ATFs were isolated that promoted drug resistance. One of these ATFs, 3ZF-1-VP, promoted paclitaxel resistance in cell lines having mutated or inactivated p53, such as MDA-MB-435 and Kaposi's sarcoma cell lines. 3ZF-1-VP also induced strong resistance to etoposide, vincristine, and cisplatinum. Linkage of a repression domain to the selected ATF resulted in enhanced sensitivity to multiple drugs, particularly vincristine, cisplatinum, and 5-fluorouracil. Small interfering RNA-mediated inhibition of p53 revealed that 3ZF-1-VP activated both p53-dependent and p53-independent mechanisms to promote survival, whereas other ATF required intact p53. Real-time expression analysis and DNA microarrays showed that several ATFs up-regulated targets of p53, such as the cyclin-dependent kinase inhibitor p21(WAF1/CIP1), and genes participating in the p14(ARF)-MDM2-p53 tumor suppressor pathway, such as hDMP1. Thus, ATF can be used to map genes and pathways involved in drug resistance phenotypes and have potential as novel therapeutic agents to inhibit drug resistance

    Unsaturated Fatty Acid Synthesis Is Associated with Worse Survival and Is Differentially Regulated by <i>MYCN</i> and Tumor Suppressor microRNAs in Neuroblastoma

    No full text
    MYCN amplification (MNA) and disruption of tumor suppressor microRNA (TSmiR) function are key drivers of poor outcomes in neuroblastoma (NB). While MYCN and TSmiRs regulate glucose metabolism, their role in de novo fatty acid synthesis (FAS) and unsaturated FAS (UFAS) remains poorly understood. Here, we show that FAS and UFAS (U/FAS) genes FASN, ELOVL6, SCD, FADS2, and FADS1 are upregulated in high-risk (HR) NB and that their expression is associated with lower overall survival. RNA-Seq analysis of human NB cell lines revealed parallel U/FAS gene expression patterns. Consistent with this, we found that NB-related TSmiRs were predicted to target these genes extensively. We further observed that both MYC and MYCN upregulated U/FAS pathway genes while suppressing TSmiR host gene expression, suggesting a possible U/FAS regulatory network between MYCN and TSmiRs in NB. NB cells are high in de novo synthesized omega 9 (ω9) unsaturated fatty acids and low in both ω6 and ω3, suggesting a means for NB to limit cell-autonomous immune stimulation and reactive oxygen species (ROS)-driven apoptosis from ω6 and ω3 unsaturated fatty acid derivatives, respectively. We propose a model in which MYCN and TSmiRs regulate U/FAS and play an important role in NB pathology, with implications for other MYC family-driven cancers
    corecore