1,965 research outputs found

    Photorealistic Style Transfer with Screened Poisson Equation

    Full text link
    Recent work has shown impressive success in transferring painterly style to images. These approaches, however, fall short of photorealistic style transfer. Even when both the input and reference images are photographs, the output still exhibits distortions reminiscent of a painting. In this paper we propose an approach that takes as input a stylized image and makes it more photorealistic. It relies on the Screened Poisson Equation, maintaining the fidelity of the stylized image while constraining the gradients to those of the original input image. Our method is fast, simple, fully automatic and shows positive progress in making a stylized image photorealistic. Our results exhibit finer details and are less prone to artifacts than the state-of-the-art.Comment: presented in BMVC 201

    GESPAR: Efficient Phase Retrieval of Sparse Signals

    Full text link
    We consider the problem of phase retrieval, namely, recovery of a signal from the magnitude of its Fourier transform, or of any other linear transform. Due to the loss of the Fourier phase information, this problem is ill-posed. Therefore, prior information on the signal is needed in order to enable its recovery. In this work we consider the case in which the signal is known to be sparse, i.e., it consists of a small number of nonzero elements in an appropriate basis. We propose a fast local search method for recovering a sparse signal from measurements of its Fourier transform (or other linear transform) magnitude which we refer to as GESPAR: GrEedy Sparse PhAse Retrieval. Our algorithm does not require matrix lifting, unlike previous approaches, and therefore is potentially suitable for large scale problems such as images. Simulation results indicate that GESPAR is fast and more accurate than existing techniques in a variety of settings.Comment: Generalized to non-Fourier measurements, added 2D simulations, and a theorem for convergence to stationary poin

    Deep Photo Style Transfer

    Full text link
    This paper introduces a deep-learning approach to photographic style transfer that handles a large variety of image content while faithfully transferring the reference style. Our approach builds upon the recent work on painterly transfer that separates style from the content of an image by considering different layers of a neural network. However, as is, this approach is not suitable for photorealistic style transfer. Even when both the input and reference images are photographs, the output still exhibits distortions reminiscent of a painting. Our contribution is to constrain the transformation from the input to the output to be locally affine in colorspace, and to express this constraint as a custom fully differentiable energy term. We show that this approach successfully suppresses distortion and yields satisfying photorealistic style transfers in a broad variety of scenarios, including transfer of the time of day, weather, season, and artistic edits

    An Essay on Miranda’s Fortieth Birthday

    Get PDF

    Texture Mixer: A Network for Controllable Synthesis and Interpolation of Texture

    Full text link
    This paper addresses the problem of interpolating visual textures. We formulate this problem by requiring (1) by-example controllability and (2) realistic and smooth interpolation among an arbitrary number of texture samples. To solve it we propose a neural network trained simultaneously on a reconstruction task and a generation task, which can project texture examples onto a latent space where they can be linearly interpolated and projected back onto the image domain, thus ensuring both intuitive control and realistic results. We show our method outperforms a number of baselines according to a comprehensive suite of metrics as well as a user study. We further show several applications based on our technique, which include texture brush, texture dissolve, and animal hybridization.Comment: Accepted to CVPR'1

    Sparsity based sub-wavelength imaging with partially incoherent light via quadratic compressed sensing

    Full text link
    We demonstrate that sub-wavelength optical images borne on partially-spatially-incoherent light can be recovered, from their far-field or from the blurred image, given the prior knowledge that the image is sparse, and only that. The reconstruction method relies on the recently demonstrated sparsity-based sub-wavelength imaging. However, for partially-spatially-incoherent light, the relation between the measurements and the image is quadratic, yielding non-convex measurement equations that do not conform to previously used techniques. Consequently, we demonstrate new algorithmic methodology, referred to as quadratic compressed sensing, which can be applied to a range of other problems involving information recovery from partial correlation measurements, including when the correlation function has local dependencies. Specifically for microscopy, this method can be readily extended to white light microscopes with the additional knowledge of the light source spectrum.Comment: 16 page
    • …
    corecore