991 research outputs found

    Teaching practice in risk education for 5-16 year olds.

    Get PDF

    Ga+ beam lithography for suspended lateral beams and nanowires

    Get PDF
    The authors demonstrate the fabrication of suspended nanowires and doubly clamped beams by using a focused ion beam implanted Ga etch mask followed by an inductively coupled plasma reactive ion etching of silicon. This method will demonstrate how a two-step, completely dry fabrication sequence can be tuned to generate nanomechanical structures on either silicon substrates or silicon on insulator (SOI). This method was used to generate lateral nanowires suspended between 2 µm scaled structures with lengths up to 16 µm and widths down to 40 nm on a silicon substrate. The authors also fabricate 10 µm long doubly clamped beams on SOIs that are 20 nm thick and a minimum of 150 nm wide. In situ electrical measurements of the beams demonstrate a reduction of resistivity from > 37.5 Ω cm down to 0.25 Ω cm. Transmission electron microscopy for quantifying both surface roughness and crystallinity of the suspended nanowires was performed. Finally, a dose array for repeatable fabrication of a desired beam width was also experimentally determined

    Strategic principles and capacity building for a whole-of-systems approaches to physical activity

    Get PDF

    Wafer-bonded single-crystal silicon slot waveguides and ring resonators

    Get PDF
    We fabricated horizontal Si slot waveguides with a 25 nm SiO2 slot layer by bonding thin Si-on-insulator wafers. After removing the Si substrate and buried oxide from one side of the bonded structure, grating-coupled waveguides and ring resonators were partially etched into the Si/SiO2/Si device layers. The gratings exhibit efficiencies of up to 23% at 1550 nm and the ring resonators were measured to have loaded quality factors near 42 000 for the lowest-order transverse-electric mode, corresponding to a propagation loss of 15 dB/cm. The leaky lowest-order transverse-magnetic mode was also observed with a propagation loss of 44 dB/cm

    A review of Bennelongia De Deckker & McKenzie, 1981 (Crustacea, Ostracoda) species from eastern Australia with the description of three new species

    Get PDF
    Australia is predicted to have a high number of currently undescribed ostracod taxa. The genus Bennelongia De Deckker & McKenzie, 1981 (Crustacea, Ostracoda) occurs in Australia and New Zealand, and has recently shown potential for high speciosity, after the description of nine new species from Western Australia. Here, we focus on Bennelongia from eastern Australia, with the objectives of exploring likely habitats for undiscovered species, genetically characterising published morphological species and scanning classical species for cryptic diversity. Two traditional (morphological) species are confi rmed to be valid using molecular evidence (B. harpago De Deckker & McKenzie, 1981 and B. pinpi De Deckker, 1981), while three new species are described using both morphological and molecular evidence. Two of the new species belong to the B. barangaroo lineage (B. dedeckkeri sp. nov. and B. mckenziei sp. nov.), while the third is a member of the B. nimala lineage (B. regina sp. nov.). Another species was found to be genetically distinct, but is not formally described here owing to a lack of distinguishing morphological features from the existing species B. cuensis Martens et al., 2012. Trends in diversity and radiation of the genus are discussed, as well as implications these results have for the conservation of temporary pool microfauna and our understanding of Bennelongia’s evolutionary origin

    Ga^+ beam lithography for nanoscale silicon reactive ion etching

    Get PDF
    By using a dry etch chemistry which relies on the highly preferential etching of silicon, over that of gallium (Ga), we show resist-free fabrication of precision, high aspect ratio nanostructures and microstructures in silicon using a focused ion beam (FIB) and an inductively coupled plasma reactive ion etcher (ICP-RIE). Silicon etch masks are patterned via Ga^+ ion implantation in a FIB and then anisotropically etched in an ICP-RIE using fluorinated etch chemistries. We determine the critical areal density of the implanted Ga layer in silicon required to achieve a desired etch depth for both a Pseudo Bosch (SF_6/C_4F_8) and cryogenic fluorine (SF_6/O_2) silicon etching. High fidelity nanoscale structures down to 30 nm and high aspect ratio structures of 17:1 are demonstrated. Since etch masks may be patterned on uneven surfaces, we utilize this lithography to create multilayer structures in silicon. The linear selectivity versus implanted Ga density enables grayscale lithography. Limits on the ultimate resolution and selectivity of Ga lithography are also discussed

    Participatory Mapping of Mid-Holocene Anthropogenic Landscapes in Guyana with Kite Aerial Photography

    Get PDF
    The nature and degree of human modifications of humid tropical forests in Amazonia have been widely debated over the past two decades Many regions provide significant evidence of late Holocene anthropogenic influence by settled populations but the antiquity of human interventions is still poorly understood due to a lack of earlier archaeological sites across the broad region particularly pertaining to the mid-Holocene Here we report on Amerindian occupations spanning the period from ca 6000-3000 BP along the middle Berbice River Guyana including early evidence in Amazonia of cultural practices widely considered indicative of settled villages notably terra preta or black earth soils mound construction and ceramic technology These more settled occupations of the mid-Holocene initiated a trajectory of landscape domestication extending into historical times including larger-scale late Holocene social formations Collaborative research with local indigenous communities including archaeological excavations landscape mapping using kite based aerial photography and three-dimensional photogrammetry was designed to promote the decolonization of archaeological knowledge production and encourage indigenous ownership of Amerindian history and cultural heritage in Guyan
    corecore