93 research outputs found
A new chemical formulation for control of dental unit water line contamination: An 'in vitro' and clinical 'study'
BACKGROUND: Water delivered by dental units during routine dental practice is highly contaminated. The aim of this study is to evaluate the efficacy of a new chemical solution flushed through Dental Unit Water Lines (DUWL) for the control of contamination inside dental units. MATERIALS AND METHODS: Six old dental units equipped with a device designed to automatically flush disinfecting solutions through the water system (Castellini Autosteril) were selected. Water samples from DUWL effluents were collected in each dental unit for 10 randomly selected days, before and after a 5 minute DUWL disinfecting cycle with TetraAcetylEthileneDiamine (TAED) and persalt (Ster4spray produced by Farmec spa, and distributed by Castellini spa). Water samples were plated in R2A Agar and cultured at room temperature for 7 days, and the total number of heterotrophic microorganisms counted and expressed in Log(10) CFU/mL A general linear model was fitted and multiple regression ANOVA for repeated measures was used for the statistical analysis. RESULTS: The mean contamination in DUWL effluent at baseline was 5.45 ± 0.35 CFU/mL (range 4.79 to 5.93 CFU/mL). When water samples were tested "in vitro" against the chemical, no growth of heterotrophic bacteria was detected after a 5 minute contact in any of the water samples tested. After undergoing a 5 minute disinfecting cycle with the chemical, DUWL mean contamination in water effluents was 2.01 ± 0.32 CFU/mL (range 1.30 to 2.74 CFU/mL) (significant difference with respect to baseline). CONCLUSIONS: An inbetween patient disinfecting procedure consisting of flushing DUWL with TAED and persalt equivalent to 0.26% peracetic acid could be useful in routine dental practice for cross-contamination control
Social Networks and Friendships at School: Comparing Children With and Without ASD
Self, peer and teacher reports of social relationships were examined for 60 high-functioning children with ASD. Compared to a matched sample of typical children in the same classroom, children with ASD were more often on the periphery of their social networks, reported poorer quality friendships and had fewer reciprocal friendships. On the playground, children with ASD were mostly unengaged but playground engagement was not associated with peer, self, or teacher reports of social behavior. Twenty percent of children with ASD had a reciprocated friendship and also high social network status. Thus, while the majority of high functioning children with ASD struggle with peer relationships in general education classrooms, a small percentage of them appear to have social success
Contribution of Cell Elongation to the Biofilm Formation of Pseudomonas aeruginosa during Anaerobic Respiration
Pseudomonas aeruginosa, a gram-negative bacterium of clinical importance, forms more robust biofilm during anaerobic respiration, a mode of growth presumed to occur in abnormally thickened mucus layer lining the cystic fibrosis (CF) patient airway. However, molecular basis behind this anaerobiosis-triggered robust biofilm formation is not clearly defined yet. Here, we identified a morphological change naturally accompanied by anaerobic respiration in P. aeruginosa and investigated its effect on the biofilm formation in vitro. A standard laboratory strain, PAO1 was highly elongated during anaerobic respiration compared with bacteria grown aerobically. Microscopic analysis demonstrated that cell elongation likely occurred as a consequence of defective cell division. Cell elongation was dependent on the presence of nitrite reductase (NIR) that reduces nitrite (NO2−) to nitric oxide (NO) and was repressed in PAO1 in the presence of carboxy-PTIO, a NO antagonist, demonstrating that cell elongation involves a process to respond to NO, a spontaneous byproduct of the anaerobic respiration. Importantly, the non-elongated NIR-deficient mutant failed to form biofilm, while a mutant of nitrate reductase (NAR) and wild type PAO1, both of which were highly elongated, formed robust biofilm. Taken together, our data reveal a role of previously undescribed cell biological event in P. aeruginosa biofilm formation and suggest NIR as a key player involved in such process
Design Novel Dual Agonists for Treating Type-2 Diabetes by Targeting Peroxisome Proliferator-Activated Receptors with Core Hopping Approach
Owing to their unique functions in regulating glucose, lipid and cholesterol metabolism, PPARs (peroxisome proliferator-activated receptors) have drawn special attention for developing drugs to treat type-2 diabetes. By combining the lipid benefit of PPAR-alpha agonists (such as fibrates) with the glycemic advantages of the PPAR-gamma agonists (such as thiazolidinediones), the dual PPAR agonists approach can both improve the metabolic effects and minimize the side effects caused by either agent alone, and hence has become a promising strategy for designing effective drugs against type-2 diabetes. In this study, by means of the powerful “core hopping” and “glide docking” techniques, a novel class of PPAR dual agonists was discovered based on the compound GW409544, a well-known dual agonist for both PPAR-alpha and PPAR-gamma modified from the farglitazar structure. It was observed by molecular dynamics simulations that these novel agonists not only possessed the same function as GW409544 did in activating PPAR-alpha and PPAR-gamma, but also had more favorable conformation for binding to the two receptors. It was further validated by the outcomes of their ADME (absorption, distribution, metabolism, and excretion) predictions that the new agonists hold high potential to become drug candidates. Or at the very least, the findings reported here may stimulate new strategy or provide useful insights for discovering more effective dual agonists for treating type-2 diabetes. Since the “core hopping” technique allows for rapidly screening novel cores to help overcome unwanted properties by generating new lead compounds with improved core properties, it has not escaped our notice that the current strategy along with the corresponding computational procedures can also be utilized to find novel and more effective drugs for treating other illnesses
Early infant HIV-1 diagnosis programs in resource-limited settings: opportunities for improved outcomes and more cost-effective interventions
Early infant diagnosis (EID) of HIV-1 infection confers substantial benefits to HIV-infected and HIV-uninfected infants, to their families, and to programs providing prevention of mother-to-child transmission (PMTCT) services, but has been challenging to implement in resource-limited settings. In order to correctly inform parents/caregivers of infant infection status and link HIV-infected infants to care and treatment, a 'cascade' of events must successfully occur. A frequently cited barrier to expansion of EID programs is the cost of the required laboratory assays. However, substantial implementation barriers, as well as personnel and infrastructure requirements, exist at each step in the cascade. In this update, we review challenges to uptake at each step in the EID cascade, highlighting that even with the highest reported levels of uptake, nearly half of HIV-infected infants may not complete the cascade successfully. We next synthesize the available literature about the costs and cost effectiveness of EID programs; identify areas for future research; and place these findings within the context of the benefits and challenges to EID implementation in resource-limited settings
Relevance of laboratory testing for the diagnosis of primary immunodeficiencies: a review of case-based examples of selected immunodeficiencies
The field of primary immunodeficiencies (PIDs) is one of several in the area of clinical immunology that has not been static, but rather has shown exponential growth due to enhanced physician, scientist and patient education and awareness, leading to identification of new diseases, new molecular diagnoses of existing clinical phenotypes, broadening of the spectrum of clinical and phenotypic presentations associated with a single or related gene defects, increased bioinformatics resources, and utilization of advanced diagnostic technology and methodology for disease diagnosis and management resulting in improved outcomes and survival. There are currently over 200 PIDs with at least 170 associated genetic defects identified, with several of these being reported in recent years. The enormous clinical and immunological heterogeneity in the PIDs makes diagnosis challenging, but there is no doubt that early and accurate diagnosis facilitates prompt intervention leading to decreased morbidity and mortality. Diagnosis of PIDs often requires correlation of data obtained from clinical and radiological findings with laboratory immunological analyses and genetic testing. The field of laboratory diagnostic immunology is also rapidly burgeoning, both in terms of novel technologies and applications, and knowledge of human immunology. Over the years, the classification of PIDs has been primarily based on the immunological defect(s) ("immunophenotype") with the relatively recent addition of genotype, though there are clinical classifications as well. There can be substantial overlap in terms of the broad immunophenotype and clinical features between PIDs, and therefore, it is relevant to refine, at a cellular and molecular level, unique immunological defects that allow for a specific and accurate diagnosis. The diagnostic testing armamentarium for PID includes flow cytometry - phenotyping and functional, cellular and molecular assays, protein analysis, and mutation identification by gene sequencing. The complexity and diversity of the laboratory diagnosis of PIDs necessitates many of the above-mentioned tests being performed in highly specialized reference laboratories. Despite these restrictions, there remains an urgent need for improved standardization and optimization of phenotypic and functional flow cytometry and protein-specific assays. A key component in the interpretation of immunological assays is the comparison of patient data to that obtained in a statistically-robust manner from age and gender-matched healthy donors. This review highlights a few of the laboratory assays available for the diagnostic work-up of broad categories of PIDs, based on immunophenotyping, followed by examples of disease-specific testing
Virtual reality crowd simulation: effects of agent density on user experience and behaviour
Agent-based crowd simulations are used for modelling building and space usage, allowing designers to explore hypothetical real-world scenarios, including extraordinary events such as evacuations. Existing work which engages virtual reality (VR) as a platform for crowd simulations has been primarily focussed on the validation of simulation models through observation; the use of interactions such as gaze to enhance a sense of immersion; or studies of proxemics. In this work, we extend previous studies of proxemics and examine the effects of varying crowd density on user experience and behaviour. We have created a simulation in which participants walk freely and perform a routine manual task, whilst interacting with agents controlled by a typical social force simulation model. We examine and report the effects of crowd density on both affective state and behaviour. Our results show a significant increase in negative affect with density, measured using a self-report scale. We further show significant differences in some aspects of user behaviours, using video analysis, and discuss how our results relate to VR simulation design for mixed human–agent scenarios
- …