26 research outputs found

    A global experiment on motivating social distancing during the COVID-19 pandemic

    Get PDF
    Finding communication strategies that effectively motivate social distancing continues to be a global public health priority during the COVID-19 pandemic. This cross-country, preregistered experiment (n = 25,718 from 89 countries) tested hypotheses concerning generalizable positive and negative outcomes of social distancing messages that promoted personal agency and reflective choices (i.e., an autonomy-supportive message) or were restrictive and shaming (i.e., a controlling message) compared with no message at all. Results partially supported experimental hypotheses in that the controlling message increased controlled motivation (a poorly internalized form of motivation relying on shame, guilt, and fear of social consequences) relative to no message. On the other hand, the autonomy-supportive message lowered feelings of defiance compared with the controlling message, but the controlling message did not differ from receiving no message at all. Unexpectedly, messages did not influence autonomous motivation (a highly internalized form of motivation relying on one’s core values) or behavioral intentions. Results supported hypothesized associations between people’s existing autonomous and controlled motivations and self-reported behavioral intentions to engage in social distancing. Controlled motivation was associated with more defiance and less long-term behavioral intention to engage in social distancing, whereas autonomous motivation was associated with less defiance and more short- and long-term intentions to social distance. Overall, this work highlights the potential harm of using shaming and pressuring language in public health communication, with implications for the current and future global health challenges

    A global experiment on motivating social distancing during the COVID-19 pandemic

    Get PDF
    Finding communication strategies that effectively motivate social distancing continues to be a global public health priority during the COVID-19 pandemic. This cross-country, preregistered experiment (n = 25,718 from 89 countries) tested hypotheses concerning generalizable positive and negative outcomes of social distancing messages that promoted personal agency and reflective choices (i.e., an autonomy-supportive message) or were restrictive and shaming (i.e. a controlling message) compared to no message at all. Results partially supported experimental hypotheses in that the controlling message increased controlled motivation (a poorly-internalized form of motivation relying on shame, guilt, and fear of social consequences) relative to no message. On the other hand, the autonomy-supportive message lowered feelings of defiance compared to the controlling message, but the controlling message did not differ from receiving no message at all. Unexpectedly, messages did not influence autonomous motivation (a highly-internalized form of motivation relying on one’s core values) or behavioral intentions. Results supported hypothesized associations between people’s existing autonomous and controlled motivations and self-reported behavioral intentions to engage in social distancing: Controlled motivation was associated with more defiance and less long-term behavioral intentions to engage in social distancing, whereas autonomous motivation was associated with less defiance and more short- and long-term intentions to social distance. Overall, this work highlights the potential harm of using shaming and pressuring language in public health communication, with implications for the current and future global health challenges

    Table_1_Network analysis and relationship of symptom factors to functional outcomes and quality of life following mild traumatic brain injury: a TRACK-TBI study.docx

    No full text
    IntroductionMild traumatic brain injury (mTBI) is a heterogenous injury which can be difficult to characterize and manage. Using cross-sectional network analysis (NA) to conceptualize mTBI symptoms offers an innovative solution to identify how mTBI symptoms relate to each other. The centrality hypothesis of network theory posits that certain symptoms in a network are more relevant (central) or have above average influence over the rest of the network. However, no studies have used NA to characterize the interrelationships between symptoms in a cohort of patients who presented with mTBI to a U.S. Level 1 trauma center emergency department and how subacute central symptoms relate to long-term outcomes.MethodsPatients with mTBI (Glasgow Coma Scale = 13–15) evaluated across 18 U.S. Level 1 trauma centers from 2013 to 2019 completed the Rivermead Post-Concussion Symptoms Questionnaire (RPQ) at 2 weeks (W2) post-injury (n = 1,593) and at 3 months (M3), 6 months (M6), and 12 months (M12) post-injury. Network maps were developed from RPQ subscale scores at each timepoint. RPQ scores at W2 were associated with M6 and M12 functional and quality of life outcomes.ResultsNetwork structure did not differ across timepoints, indicating no difference in symptoms/factors influence on the overall symptom network across time. The cognitive factor had the highest expected influence at W2 (1.761), M3 (1.245), and M6 (1.349). Fatigue had the highest expected influence at M12 (1.275). The emotional factor was the only other node with expected influence >1 at any timepoint, indicating disproportionate influence of emotional symptoms on overall symptom burden (M3 = 1.011; M6 = 1.076).DiscussionSeveral symptom factors at 2-weeks post-injury were more strongly associated with incomplete recovery and/or poorer injury-related quality of life at 6 and 12 months post-injury than previously validated demographic and clinical covariates. The network analysis suggests that emotional, cognitive, and fatigue symptoms may be useful treatment targets in this population due to high centrality and activating potential of the overall symptom network.</p

    Derivation of Injury-Responsive Dendritic Cells for Acute Brain Targeting and Therapeutic Protein Delivery in the Stroke-Injured Rat

    Get PDF
    <div><p>Research with experimental stroke models has identified a wide range of therapeutic proteins that can prevent the brain damage caused by this form of acute neurological injury. Despite this, we do not yet have safe and effective ways to deliver therapeutic proteins to the injured brain, and this remains a major obstacle for clinical translation. Current targeted strategies typically involve invasive neurosurgery, whereas systemic approaches produce the undesirable outcome of non-specific protein delivery to the entire brain, rather than solely to the injury site. As a potential way to address this, we developed a protein delivery system modeled after the endogenous immune cell response to brain injury. Using ex-vivo-engineered dendritic cells (DCs), we find that these cells can transiently home to brain injury in a rat model of stroke with both temporal and spatial selectivity. We present a standardized method to derive injury-responsive DCs from bone marrow and show that injury targeting is dependent on culture conditions that maintain an immature DC phenotype. Further, we find evidence that when loaded with therapeutic cargo, cultured DCs can suppress initial neuron death caused by an ischemic injury. These results demonstrate a non-invasive method to target ischemic brain injury and may ultimately provide a way to selectively deliver therapeutic compounds to the injured brain.</p></div

    In vivo migration profile of cultured DCs.

    No full text
    <p><b>(A)–(C)</b> Bioluminescent imaging of rats positioned dorsally (left panels) and ventrally (right panels) 6 h post-tMCAO and 3 h post-infusion of: <b>(A)</b> vehicle, <b>(B)</b> 2×10<sup>6</sup> luciferase-DCs, or <b>(C)</b> 4×10<sup>6</sup> luciferase-DCs <b>(D)</b> High resolution (low-binning) image of a luciferase-DC-infused rat at the same time point as (A)–(C). <b>(E)</b> In vivo tracking of radiolabeled DCs with SPECT. Representative images of 3 rats infused with radiolabeled DCs 3 h post-tMCAO and imaged by SPECT at 5–20 min and again at 2.5–6 h post-DC infusion. Inset in top left panel indicates the orientation of rats during imaging. Rat number (1–3) and imaging time post-DC infusion are indicated at the bottom of each image panel.</p

    Infarct quantification following treatment with protein-loaded DCs.

    No full text
    <p><b>(A)</b> Representative cresyl violet stain for each treatment group showing the 6 coronal sections used to quantify lesion size at 24 h post-tMCAO. <b>(B)</b> Quantification of lesion size at 24 h post-tMCAO by coronal brain section and treatment group. * indicates significance by one-way ANOVA plus Student-Newman-Keuls post-hoc analysis of tBH4-DCs and GFP-DCs for the sum infarct area of coronal sections 2–4, P = 0.040.</p

    Morphological and surface marker profile of 7-day-old, lentivirus-transduced, rat bone marrow-derived DC cultures.

    No full text
    <p><b>(A)</b> Large clusters of round cells predominate by culture day 7, forming a semi-adherent layer over stromal-type cells (top left and center panels). Fluorescent micrograph of a harvested, GFP-transgenic DC with representative spherical, mononuclear morphology (top right panel). Scale bars: (left) 50 µm, (center) 5 µm, (right) 0.5 µm. <b>(B)</b> Flow cytometric analysis of DC cultures showing forward- and side-scatter dot plot with the gated population prior to singlet gating (upper left panel), and histograms of mean fluorescent intensity (x-axis) versus percentage of gated population (y-axis) for CD11b/c (OX42), CD11c, MHC class II (OX6), CD80, CD68, CCR2, and VLA4. Results shown in (B) are representative of at least 3 independent experiments, assaying 20,000 cells per experiment.</p
    corecore