531 research outputs found

    Hydromorphological, hydraulic and ecological effects of restored wood: findings and reflections from an academic partnership approach

    Get PDF
    This is the peer reviewed version of the following article: Pinto, C. , Ing, R. , Browning, B. , Delboni, V. , Wilson, H. , Martyn, D. and Harvey, G. L. (2019), Hydromorphological, hydraulic and ecological effects of restored wood: findings and reflections from an academic partnership approach. Water and Environment Journal. doi:10.1111/wej.12457, which has been published in final form at https://doi.org/10.1111/wej.12457. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions© 2019 CIWEM Large wood (re)introduction can deliver multiple benefits in river restoration, but there is a dearth of the detailed and longer-term post-project monitoring and evaluation required for improving best practice. We present findings from an academic partnership approach to post-project evaluation, based on successive MSc research projects on restored large wood in the Loddon catchment, UK. Field and modelling data reveal: (i) key differences in large wood features between restored and natural reaches; (ii) increased hydraulic retention and changes to mesohabitats associated with large wood; (iii) differences in macroinvertebrate community composition around large wood but a lack of site-level effects; (iv) interactions between macrophytes and large wood that may be specific to restored reaches; (v) a need for further field and modelling studies to inform the accurate representation of large wood in hydraulic models. Some key challenges in partnership working are identified to aid planning and effectiveness of future collaborations

    Magnetic Fields, Relativistic Particles, and Shock Waves in Cluster Outskirts

    Full text link
    It is only now, with low-frequency radio telescopes, long exposures with high-resolution X-ray satellites and gamma-ray telescopes, that we are beginning to learn about the physics in the periphery of galaxy clusters. In the coming years, Sunyaev-Zeldovich telescopes are going to deliver further great insights into the plasma physics of these special regions in the Universe. The last years have already shown tremendous progress with detections of shocks, estimates of magnetic field strengths and constraints on the particle acceleration efficiency. X-ray observations have revealed shock fronts in cluster outskirts which have allowed inferences about the microphysical structure of shocks fronts in such extreme environments. The best indications for magnetic fields and relativistic particles in cluster outskirts come from observations of so-called radio relics, which are megaparsec-sized regions of radio emission from the edges of galaxy clusters. As these are difficult to detect due to their low surface brightness, only few of these objects are known. But they have provided unprecedented evidence for the acceleration of relativistic particles at shock fronts and the existence of muG strength fields as far out as the virial radius of clusters. In this review we summarise the observational and theoretical state of our knowledge of magnetic fields, relativistic particles and shocks in cluster outskirts.Comment: 34 pages, to be published in Space Science Review

    Effective Lagrangian Approach to the Theory of Eta Photoproduction in the N∗(1535)N^{*}(1535) Region

    Full text link
    We investigate eta photoproduction in the N∗(1535)N^{*}(1535) resonance region within the effective Lagrangian approach (ELA), wherein leading contributions to the amplitude at the tree level are taken into account. These include the nucleon Born terms and the leading tt-channel vector meson exchanges as the non-resonant pieces. In addition, we consider five resonance contributions in the ss- and uu- channel; besides the dominant N∗(1535)N^{*}(1535), these are: N∗(1440),N∗(1520),N∗(1650)N^{*}(1440),N^{*}(1520),N^{*}(1650) and N∗(1710)N^{*}(1710). The amplitudes for the π∘\pi^\circ and the η\eta photoproduction near threshold have significant differences, even as they share common contributions, such as those of the nucleon Born terms. Among these differences, the contribution to the η\eta photoproduction of the ss-channel excitation of the N∗(1535)N^{*}(1535) is the most significant. We find the off-shell properties of the spin-3/2 resonances to be important in determining the background contributions. Fitting our effective amplitude to the available data base allows us to extract the quantity χΓηA1/2/ΓT\sqrt{\chi \Gamma_\eta} A_{1/2}/\Gamma_T, characteristic of the photoexcitation of the N∗(1535)N^{*}(1535) resonance and its decay into the η\eta-nucleon channel, of interest to precise tests of hadron models. At the photon point, we determine it to be (2.2±0.2)×10−1GeV−1(2.2\pm 0.2)\times 10^{-1} GeV^{-1} from the old data base, and (2.2±0.1)×10−1GeV−1(2.2\pm 0.1) \times 10^{-1} GeV^{-1} from a combination of old data base and new Bates data. We obtain the helicity amplitude for N∗(1535)→γpN^{*}(1535)\rightarrow \gamma p to be A1/2=(97±7)×10−3GeV−1/2A_{1/2}=(97\pm 7)\times 10^{-3} GeV^{-1/2} from the old data base, and A1/2=(97±6)×10−3GeV−1/2A_{1/2}=(97\pm 6)\times 10^{-3} GeV^{-1/2} from the combination of the old data base and new Bates data, compared with the results of the analysis of pion photoproduction yielding 74±1174\pm 11, in the same units.Comment: 43 pages, RevTeX, 9 figures available upon request, to appear in Phys. Rev.

    Comparison of proteomic responses as global approach to antibiotic mechanism of action elucidation

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. New antibiotics are urgently needed to address the mounting resistance challenge. In early drug discovery, one of the bottlenecks is the elucidation of targets and mechanisms. To accelerate antibiotic research, we provide a proteomic approach for the rapid classification of compounds into those with precedented and unprecedented modes of action. We established a proteomic response library of Bacillus subtilis covering 91 antibiotics and comparator compounds, and a mathematical approach was developed to aid data analysis. Comparison of proteomic responses (CoPR) allows the rapid identification of antibiotics with dual mechanisms of action as shown for atypical tetracyclines. It also aids in generating hypotheses on mechanisms of action as presented for salvarsan (arsphenamine) and the antirheumatic agent auranofin, which is under consideration for repurposing. Proteomic profiling also provides insights into the impact of antibiotics on bacterial physiology through analysis of marker proteins indicative of the impairment of cellular processes and structures. As demonstrated for trans-translation, a promising target not yet exploited clinically, proteomic profiling supports chemical biology approaches to investigating bacterial physiology

    Climatic effects on sugarcane ripening under the influence of cultivars and crop age

    Get PDF
    The lack of information about the effects of cultivars, crop age and climate on the sugarcane (Saccharum ssp.) crop yield and quality has been the primary factor impacting the sugar-ethanol sector in Brazil. One of the processes about which we do not have a satisfactory understanding is sugarcane ripening and the effects of cultivars, crop age and climate on that. Sugarcane ripening is the process of sucrose accumulation in stalks, which is heavily influenced by several factors, mainly by climatic conditions such as air temperature and water deficits. Because it is a complex process, studies of the variables involved in sugarcane ripening can provide important information, resulting in a better use of commercial cultivars, bringing advantages to growers, processing units, breeding programs and scientific community. In this review, we discuss the available knowledge of the interaction between climate conditions and sugarcane ripening, under the influence of genotypic characteristics and crop age. In several studies, the main conclusion is that sugarcane ripening depends on a complex combination of climate variables, the genetic potential of cultivars and crop management. Soil moisture and air temperature are the primary variables involved in sugarcane ripening, and their combination stimulates the intensity of the process. In addition, the need for studies integrating the effects of climate on plant physiological processes and on the use of chemical agents to stimulate sugarcane ripening is highlighted

    Next-to-Leading Order QCD Analysis of Polarized Deep Inelastic Scattering Data

    Full text link
    We present a Next-to-Leading order perturbative QCD analysis of world data on the spin dependent structure functions g1p,g1ng_1^p, g_1^n, and g1dg_1^d, including the new experimental information on the Q2Q^2 dependence of g1ng_1^n. Careful attention is paid to the experimental and theoretical uncertainties. The data constrain the first moments of the polarized valence quark distributions, but only qualitatively constrain the polarized sea quark and gluon distributions. The NLO results are used to determine the Q2Q^2 dependence of the ratio g1/F1g_1/F_1 and evolve the experimental data to a constant Q2=5GeV2Q^2 = 5 GeV^2. We determine the first moments of the polarized structure functions of the proton and neutron and find agreement with the Bjorken sum rule.Comment: 21 pages, 4 figures; final version to be published in Phys. Lett. B. References updated. Uses elsart.cls version 1996/04/22, 2e-1.4

    Mechanical properties, microstructure and crystallographic texture of magnesium AZ91-D alloy welded by Friction Stir Welding (FSW)

    Get PDF
    The objective of the study was to characterize the properties of a magnesium alloy welded by friction stir welding (FSW). The results led to a better understanding of the relationship between this process and the microstructure and anisotropic properties of alloy materials. Welding principally leads to a large reduction in grain size in welded zones due to the phenomenon of dynamic recrystallization. The most remarkable observation was that crystallographic textures appeared from a base metal without texture in two zones: the thermo-mechanically affected and stir welded zones. The latter zone has the peculiarity of possessing a marked texture with two components on the basal plane and the pyramidal plane. These characteristics disappeared in the TMAZ, which had only one component following the basal plane. These modifications have been explained by the nature of the plastic deformation in these zones, which occurs at a moderate temperature in the TMAZ and high temperature in the SWZ
    • 

    corecore