967 research outputs found

    Molecular beam epitaxy of highly mismatched N-rich GaNSb and InNAs alloys

    Get PDF
    GaN materials alloyed with group V anions form the so-called highly mismatched alloys (HMAs). Recently, the authors succeeded in growing N-rich GaNAs and GaNBi alloys over a large composition range by plasma-assisted molecular beam epitaxy (PA-MBE). Here, they present first results on PA-MBE growth and properties of N-rich GaNSb and InNAs alloys and compare these with GaNAs and GaNBi alloys. The enhanced incorporation of As and Sb was achieved by growing the layers at extremely low growth temperatures. Although layers become amorphous for high As, Sb, and Bi content, optical absorption measurements show a progressive shift of the optical absorption edge to lower energy. The large band gap range and controllable conduction and valence band positions of these HMAs make them promising materials for efficient solar energy conversion devices

    Computational investigations of dispersion interactions between small molecules and graphene-like flakes

    Get PDF
    We investigate dispersion interactions in a selection of atomic, molecular, and molecule–surface systems, comparing high-level correlated methods with empirically corrected density functional theory (DFT). We assess the efficacy of functionals commonly used for surface-based calculations, with and without the D3 correction of Grimme. We find that the inclusion of the correction is essential to get meaningful results, but there is otherwise little to distinguish between the functionals. We also present coupled-cluster quality interaction curves for H2, NO2, H2O, and Ar interacting with large carbon flakes, acting as models for graphene surfaces, using novel absolutely localized molecular orbital based methods. These calculations demonstrate that the problems with empirically corrected DFT when investigating dispersion appear to compound as the system size increases, with important implications for future computational studies of molecule–surface interactions

    ICAM- melanoma cells are relatively resistant to CD3-mediated T-cell lysis

    Get PDF
    Abstract The primary activation pathway of T cells is via the T-cell receptor (TCR)/CD3 complex, which is functionally interrelated with various accessory molecules. We examined the contribution of the lymphocyte-function-associated antigenI/intercellular adhesion molecule I (LFA-I/ICAM-I) interaction to CD3/TCR-mediated lysis by cytotoxic T lymphocytes (CTL). We used ICAM-I-or+ tumor cell lines as target cells and anti-CD3- or anti-LFA-I containing hetero-cross-linked monoclonal antibody (MAb) to bridge CTL and target cells and simultaneously to activate CTL. The ICAM-I- melanoma-derived cell line lgR39 was relatively resistant to CD3-mediated lysis by both TCRαÎČ+ and TCRÎłdL+ CTL, when compared with ICAM-I+ cell lines. Induction of ICAM-I on the membrane of lgR39 cells by tumor necrosis factor (TNF) rendered these cells more susceptible to CD3-mediated lysis. Anti-ICAM-I MAb inhibited this TNF-enhanced susceptibility to lysis, directly demonstrating that the induction of ICAM-I was critical in the TNF-induced increase in susceptibility to lysis of lgR39 cells. CTL formed less efficient conjugates with the ICAM-I- cells as compared to ICAM-I+ cells. Both spontaneous and CD3-induced conjugate formation as well as CD3-mediated lysis of ICAM-I- tumor cells by CTL were enhanced by the addition of anti-LFA-I containing heterocross-linked MAb, thereby mimicking the LFA-I/ICAM-I interaction between CTL and target cells. Soluble anti-CD18 MAb inhibited CD3-mediated lysis of ICAM-I- target cells by CTL without affecting their conjugate formation. Anti-LFA-I MAb added after conjugate formation still inhibited lysis of both ICAM-I+or- tumor cells. Taken together, these findings suggest that the LFA-I/ICAM-I interaction co-activates CD3/TCR-mediated lysis by CTL through both an enhanced CTL-target cell binding and the delivery of post-conjugate costimulatory signals

    Low Mannose-Binding Lectin (MBL) genotype is associated with future cardiovascular events in type 2 diabetic South Asians. A prospective cohort study

    Get PDF
    Background: South Asians have a high burden of type 2 diabetes and vascular complications. Vascular inflammation is considered central in the pathophysiology of atherosclerosis, and the complement system is thought to play an important role. Mannose-Binding Lectin (MBL), which activates the lectin pathway of complement activation, has been introduced as a risk marker of vascular damage. The present study explores the association of MBL levels, genotype and cardiovascular events in type 2 diabetic South Asians.Methods: We conducted a prospective observational study. A cohort consisting of 168 type 2 diabetic South Asians was followed for a median duration of 7.66 years. At baseline, MBL levels and genotype were determined. The association with future cardiovascular events was assessed by Cox proportional hazard regression.Results: During follow-up, 31 cardiovascular events occurred in 22 subjects (11 men, 11 women). The O/O genotype was significantly associated with the occurrence of cardiovascular events (hazard ratio 3.42, 95%CI 1.24-9.49, P = 0.018). However, log MBL levels were not associated with the occurrence of cardiovascular events (hazard ratio 0.93, 95% CI 0.50-1.73).Conclusions: In type 2 diabetic South Asians, the O/O MBL genotype is associated with cardiovascular events, although single serum MBL levels are not

    Efficient enumeration of bosonic configurations with applications to the calculation of non-radiative rates

    Get PDF
    This work presents algorithms for the efficient enumeration of configuration spaces following Boltzmann-like statistics, with example applications to the calculation of non-radiative rates, and an open-source implementation. Configuration spaces are found in several areas of physics, particularly wherever there are energy levels that possess variable occupations. In bosonic systems, where there are no upper limits on the occupation of each level, enumeration of all possible configurations is an exceptionally hard problem. We look at the case where the levels need to be filled to satisfy an energy criterion, for example, a target excitation energy, which is a type of knapsack problem as found in combinatorics. We present analyses of the density of configuration spaces in arbitrary dimensions and how particular forms of kernel can be used to envelope the important regions. In this way, we arrive at three new algorithms for enumeration of such spaces that are several orders of magnitude more efficient than the naive brute force approach. Finally, we show how these can be applied to the particular case of internal conversion rates in a selection of molecules and discuss how a stochastic approach can, in principle, reduce the computational complexity to polynomial time

    Modeling radiative and non-radiative pathways at both the Franck–Condon and Herzberg–Teller approximation level

    Get PDF
    Here, we present a concise model that can predict the photoluminescent properties of a given compound from first principles, both within and beyond the Franck–Condon approximation. The formalism required to compute fluorescence, Internal Conversion (IC), and Inter-System Crossing (ISC) is discussed. The IC mechanism, in particular, is a difficult pathway to compute due to difficulties associated with the computation of required bosonic configurations and non-adiabatic coupling elements. Here, we offer a discussion and breakdown on how to model these pathways at the Density Functional Theory (DFT) level with respect to its computational implementation, strengths, and current limitations. The model is then used to compute the photoluminescent quantum yield (PLQY) of a number of small but important compounds: anthracene, tetracene, pentacene, diketo-pyrrolo-pyrrole (DPP), and Perylene Diimide (PDI) within a polarizable continuum model. Rate constants for fluorescence, IC, and ISC compare well for the most part with respect to experiment, despite triplet energies being overestimated to a degree. The resulting PLQYs are promising with respect to the level of theory being DFT. While we obtained a positive result for PDI within the Franck–Condon limit, the other systems require a second order correction. Recomputing quantum yields with Herzberg–Teller terms yields PLQYs of 0.19, 0.08, 0.04, 0.70, and 0.99 for anthracene, tetracene, pentacene, DPP, and PDI, respectively. Based on these results, we are confident that the presented methodology is sound with respect to the level of quantum chemistry and presents an important stepping stone in the search for a tool to predict the properties of larger coupled systems

    Spatiotemporal Stochastic Resonance in Fully Frustrated Josephson Ladders

    Full text link
    We consider a Josephson-junction ladder in an external magnetic field with half flux quantum per plaquette. When driven by external currents, periodic in time and staggered in space, such a fully frustrated system is found to display spatiotemporal stochastic resonance under the influence of thermal noise. Such resonance behavior is investigated both numerically and analytically, which reveals significant effects of anisotropy and yields rich physics.Comment: 8 pages in two columns, 8 figures, to appear in Phys. Rev.
    • 

    corecore