318 research outputs found

    Electrochemical ozone sensors : A miniaturised alternative for ozone measurements in laboratory experiments and air-quality monitoring

    Get PDF
    Ozone (O3) measurements are a critical component of air quality management and many atmospheric chemistry laboratory experiments. Conventional ozone monitoring devices based on UV absorption are relatively cumbersome and expensive, and have a relative high power consumption that limits their use to fixed sites. In this study electrochemical O3 sensors (OXB421, Alphasense) were used in a miniaturised O3 measurement device combined with LabJack and Labview data acquisition (DAQ). The device required a power supply of 5 V direct current (VDC) with a total power consumption of approximately 5 W. Total weight was less than 0.5 kg, low enough for portable in situ field deployment. The electrochemical O3 sensors produced a voltage signal positively proportional to O3 concentrations over the range of 5 ppb–10 ppm. There was excellent agreement between the performances of two O3 sensors with a good linear coefficient (R2 = 0.9995). The influences of relative humidity (RH) and gas sample flow rate on sensor calibrations and sensitivities have been investigated separately. Coincident calibration curves indicate that sensor performances were almost identical even at different RHs and flow rates after a re-zeroing process to offset the sensor baseline drifts. Rapid RH changes (∼20%/min) generate significant and instant changes in sensor signal, and the sensors consistently take up to 40 min to recover their original values after such a rapid RH change. In contrast, slow RH changes (∼0.1%/min) had little effect on sensor response. To test the performance of the miniaturised O3 device for real-world applications, the O3 sensors were employed for (i) laboratory experiments to measure O3 loss by seawater uptake and (ii) air quality monitoring over an 18-day period. It was found that ozone uptake by seawater was linear to the volume of linoleic acid on a sea surface microlayer and the calculated uptake coefficients based on sensor measurements were close to those from previous studies. For the 18-day period of air quality monitoring the corrected data from the O3 sensor was in a good agreement with those obtained by reference UV O3 analyser with an r2 of 0.83 (n = 8502). The novelty of this study is that the electrochemical O3 sensor was comprehensively investigated in O3 measurements in both laboratory and ambient air quality monitoring and it can to be a miniaturised alternative for conventional O3 monitoring devices due to its low cost, low power-consumption, portable and simple-conduction properties

    Halocarbons associated with Arctic sea ice

    Get PDF
    Short-lived halocarbons were measured in Arctic sea-ice brine, seawater and air above the Greenland and Norwegian seas (∼81°N, 2 to 5°E) in mid-summer, from a melting ice floe at the edge of the ice pack. In the ice floe, concentrations of C2H5I, 2-C3H7I and CH2Br2 showed significant enhancement in the sea ice brine, of average factors of 1.7, 1.4 and 2.5 times respectively, compared to the water underneath and after normalising to brine volume. Concentrations of mono-iodocarbons in air are the highest ever reported, and our calculations suggest increased fluxes of halocarbons to the atmosphere may result from their sea-ice enhancement. Some halocarbons were also measured in ice of the sub-Arctic in Hudson Bay (∼55°N, 77°W) in early spring, ice that was thicker, colder and less porous than the Arctic ice in summer, and in which the halocarbons were concentrated to values over 10 times larger than in the Arctic ice when normalised to brine volume. Concentrations in the Arctic ice were similar to those in Antarctic sea ice that was similarly warm and porous. As climate warms and Arctic sea ice becomes more like that of the Antarctic, our results lead us to expect the production of iodocarbons and so of reactive iodine gases to increase

    Does green mean clean? Volatile organic emissions from regular versus green cleaning products

    Get PDF
    Cleaning products emit a range of volatile organic compounds (VOCs), including some which are hazardous or can undergo chemical transformations to generate harmful secondary pollutants. In recent years, “green” cleaners have become increasingly popular, with an implicit assumption that these are better for our health and/or the environment. However, there is no strong evidence to suggest that they are better for indoor air quality compared to regular products. In this study, the VOC composition of 10 regular and 13 green cleaners was examined by headspace analysis. Monoterpenes were the most prevalent VOCs, with average total monoterpene concentrations of 8.6 and 25.0 mg L-1 for regular and green cleaners, respectively. Speciated monoterpene emissions were applied to a detailed chemical model to investigate the indoor air chemistry following a typical cleaning event. Green cleaners generally emitted more monoterpenes than regular cleaners, resulting in larger increases in harmful secondary pollutant concentrations following use, such as formaldehyde (up to 7%) and PAN species (up to 6%). However, emissions of the most reactive monoterpenes (a-terpinene, terpinolene and a-phellandrene), were observed more frequently from regular cleaners, resulting in a disproportionately large impact on the concentrations of radical species and secondary pollutants that were formed after cleaning occurred

    Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring

    Get PDF
    A fast-growing area of research is the development of low-cost sensors for measuring air pollutants. The affordability and size of low-cost particle sensors makes them an attractive option for use in experiments requiring a number of instruments such as high-density spatial mapping. However, for these low-cost sensors to be useful for these types of studies their accuracy and precision need to be quantified. We evaluated the Alphasense OPC-N2, a promising low-cost miniature optical particle counter, for monitoring ambient airborne particles at typical urban background sites in the UK. The precision of the OPC-N2 was assessed by co-locating 14 instruments at a site to investigate the variation in measured concentrations. Comparison to two different reference optical particle counters as well as a TEOM-FDMS enabled the accuracy of the OPC-N2 to be evaluated. Comparison of the OPC-N2 to the reference optical instruments shows some limitations for measuring mass concentrations of PM1, PM2.5 and PM10. The OPC-N2 demonstrated a significant positive artefact in measured particle mass during times of high ambient RH (>85%) and a calibration factor was developed based upon °-Köhler theory, using average bulk particle aerosol hygroscopicity. Application of this RH correction factor resulted in the OPC-N2 measurements being within 33% of the TEOM-FDMS, comparable to the agreement between a reference optical particle counter and the TEOM-FDMS (20%). Inter-unit precision for the 14 OPC-N2 sensors of 22±13% for PM10 mass concentrations was observed. Overall, the OPC-N2 was found to accurately measure ambient airborne particle mass concentration provided they are (i) correctly calibrated and (ii) corrected for ambient RH. The level of precision demonstrated between multiple OPC-N2s suggests that they would be suitable devices for applications where the spatial variability in particle concentration was to be determined

    Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring

    Get PDF
    A fast growing area of research is the development of low-cost sensors for measuring air pollutants. The affordability and size of low-cost particle sensors makes them an attractive option for use in experiments requiring a number of instruments such as high density spatial mapping. However, for these low-cost sensors to be useful for these types of studies their accuracy and precision needs to be quantified. We evaluated the Alphasense OPC-N2, a promising low-cost miniature optical particle counter, for monitoring ambient airborne particles at typical urban background sites in the UK. The precision of the OPC-N2 was assessed by co-locating 14 instruments at a site to investigate the variation in measured concentrations. Comparison to two different reference optical particle counters as well as a TEOM-FDMS enabled the accuracy of the OPC-N2 to be evaluated. Comparison of the OPC-N2 to the reference optical instruments demonstrated reasonable agreement for the measured mass concentrations of PM1, PM2.5 and PM10. However, the OPC-N2 demonstrated a significant positive artefact in measured particle mass during times of high ambient RH (> 85 %) and a calibration factor was developed based upon κ-Kohler theory, using average bulk particle aerosol hygroscopicity. Application of this RH correction factor resulted in the OPC-N2 measurements being within 33 % of the TEOM-FDMS, comparable to the agreement between a reference optical particle counter and the TEOM-FDMS (20 %). Reasonable inter-unit precision for the 14 OPC-N2 sensors was observed. Overall, the OPC-N2 was found to accurately measure ambient airborne particle mass concentration provided they are i) correctly calibrated and ii) corrected for ambient RH. The reasonable level of precision demonstrated between multiple OPC-N2 suggests that they would be suitable device for applications where the spatial variability in particle concentration was to be determined

    Clustering approaches to improve the performance of low cost air pollution sensors

    Get PDF
    Low cost air pollution sensors have substantial potential for atmospheric research and for the applied control of pollution in the urban environment, including more localized warnings to the public. The current generation of single-chemical gas sensors experience degrees of interference from other co-pollutants and have sensitivity to environmental factors such as temperature, wind speed and supply voltage. There are uncertainties introduced also because of sensor-to-sensor response variability, although this is less well reported. The sensitivity of Metal Oxide Sensors (MOS) to volatile organic compounds (VOCs) changed with relative humidity (RH) by up to a factor of five over the range 19-90%RH and with an uncertainty in the correction of a factor two at any given RH. The short-term (second to minute) stabilities of MOS and electrochemical CO sensor responses were reasonable. During more extended use inter-sensor quantitative comparability was degraded due to unpredictable variability in individual sensor responses (to either measurand or interference or both) drifting over timescales of several hours to days. For timescales longer than a week identical sensors showed slow, often downwards, drifts in their responses which diverged across six CO sensors by up to 30% after two weeks. The measurement derived from the median sensor within clusters of 6, 8 and up to 21 sensors was evaluated against individual sensor performance and external reference values. The clustered approach maintained the cost competitiveness of a sensor device, but the median concentration from the ensemble of sensor signals largely eliminated the randomised hour-to-day response drift seen in individual sensors and excluded the effects of small numbers of poorly performing sensors that drifted significantly over longer time periods. The results demonstrate that for individual sensors to be optimally comparable to one another, and to reference instruments, they would likely require frequent calibration. The use of a cluster median value eliminates unpredictable medium term response changes, and other longer term outlier behaviours, extending the likely period needed between calibration and making a linear interpolation between calibrations more appropriate. Through the use of sensor clusters rather than individual sensors existing low cost technologies could deliver significantly improved quality of observations

    A measurement and modelling investigation of the indoor air chemistry following cooking activities

    Get PDF
    Domestic cooking is a source of indoor air pollutants, including volatile organic compounds (VOCs), which can impact on indoor air quality. However, the real-time VOC emissions from cooking are not well characterised, and similarly, the resulting secondary chemistry is poorly understood. Here, selected-ion flow-tube mass spectrometry (SIFT-MS) was used to monitor the real-time VOC emissions during the cooking of a scripted chicken and vegetable stir-fry meal, in a room scale, semi-realistic environment. The VOC emissions were dominated by alcohols (70% of total emission), but also contained a range of aldehydes (14%) and terpenes (5%), largely attributable to the heating of oil and the preparation and heating of spices, respectively. The direct cooking-related VOC emissions were then simulated using the Indoor Chemical Model in Python (INCHEM-Py), to investigate the resulting secondary chemistry. Modelling revealed that VOC concentrations were dominated by direct emissions, with only a small contribution from secondary products, though the secondary species were longer lived than the directly emitted species. Following cooking, hydroxyl radical concentrations reduced by 86%, while organic peroxy radical levels increased by over 700%, later forming secondary organic nitrates, peroxyacylnitrates (PANs) and formaldehyde. Monoterpene emissions were shown to drive the formation of secondary formaldehyde, albeit to produce relatively modest concentrations (average of 60 ppt). Sensitivity analysis of the simulation conditions revealed that increasing the outdoor concentrations of ozone and NOx species (2.9× and 9×, respectively) resulted in the greatest increase in secondary product formation indoors (≈400%, 200% and 600% increase in organic nitrates, PANs and formaldehyde production, respectively). Given the fact that climate change is likely to result in increased ozone concentrations in the future, and that increased window-opening in response to rising temperatures is also likely, higher concentrations of indoor oxidants are likely in homes in the future. This work, therefore, suggests that cooking could be a more important source of secondary pollutants indoors in the future

    Unreported VOC Emissions from Road Transport Including from Electric Vehicles

    Get PDF
    There are widespread policy assumptions that the phase-out of gasoline and diesel internal combustion engines will over time lead to much reduced emissions of Volatile Organic Compounds (VOCs) from road transport and related fuels. However, the use of real-world emissions measurements from a new mobile air quality monitoring station demonstrated a large underestimation of alcohol-based species in road transport emissions inventories. Scaling of industry sales statistics enabled the discrepancy to be attributed to the use of ancillary solvent products such as screenwash and deicer which are not included in internationally applied vehicle emission methodologies. A fleet average nonfuel nonexhaust VOC emission factor of 58 ± 39 mg veh -1 km -1 was calculated for the missing source, which is greater than the total of all VOCs emitted from vehicle exhausts and their associated evaporative fuel losses. These emissions are independent of the vehicle energy/propulsion system and therefore applicable to all road vehicle types including those with battery-electric powertrains. In contrast to predictions, vehicle VOC emissions may actually increase given a predicted growth in total vehicle kilometers driven in a future electrified fleet and will undergo a complete VOC respeciation due to the source change

    Emission ratio determination from road vehicles using a range of remote emission sensing techniques

    Get PDF
    The development of remote emission sensing techniques such as plume chasing and point sampling has progressed significantly and is providing new insight into vehicle emissions behaviour. However, the analysis of remote emission sensing data can be highly challenging and there is currently no standardised method available. In this study we present a single data processing approach to quantify vehicle exhaust emissions measured using a range of remote emission sensing techniques. The method uses rolling regression calculated over short time intervals to derive the characteristics of diluting plumes. We apply the method to high time-resolution plume chasing and point sampling data to quantify gaseous exhaust emission ratios from individual vehicles. Data from a series of vehicle emission characterisation experiments conducted under controlled conditions is used to demonstrate the potential of this approach. First, the method is validated through comparison with on-board emission measurements. Second, the ability of this approach to detect changes in NOx / CO2 ratios associated with aftertreatment system tampering and different engine operating conditions is shown. Third, the flexibility of the approach is demonstrated by varying the pollutants used as regression variables and quantifying the NO2 / NOx ratios for different vehicle types. A higher proportion of total NOx is emitted as NO2 when the selective catalytic reduction system of the measured heavy duty truck is tampered. In addition, the applicability of this approach to urban environments is illustrated using mobile measurements conducted in Milan, Italy in 2021. Emissions from local combustion sources are distinguished from a complex urban background and the spatiotemporal variability in emissions is shown. The mean NOx / CO2 ratio of 1.61 ppb/ppm is considered representative of the local vehicle fleet. It is envisaged that this approach can be used to quantify emissions from a range of mobile and stationary fuel combustion sources, including non-road vehicles, ships, trains, boilers and incinerators

    Intercomparison of nitrous acid (HONO) measurement techniques in a megacity (Beijing)

    Get PDF
    Nitrous acid (HONO) is a key determinant of the daytime radical budget in the daytime boundary layer, with quantitative measurement required to understand OH radical abundance. Accurate and precise measurements of HONO are therefore needed; however HONO is a challenging compound to measure in the field, in particular in a chemically complex and highly polluted environment. Here we report an intercomparison exercise between HONO measurements performed by two wet chemical techniques (the commercially available a long-path absorption photometer (LOPAP) and a custom-built instrument) and two broadband cavity-enhanced absorption spectrophotometer (BBCEAS) instruments at an urban location in Beijing. In addition, we report a comparison of HONO measurements performed by a time-of-flight chemical ionization mass spectrometer (ToF-CIMS) and a selected ion flow tube mass spectrometer (SIFT-MS) to the more established techniques (wet chemical and BBCEAS). The key finding from the current work was that all instruments agree on the temporal trends and variability in HONO (r2 > 0.97), yet they displayed some divergence in absolute concentrations, with the wet chemical methods consistently higher overall than the BBCEAS systems by between 12 % and 39 %. We found no evidence for any systematic bias in any of the instruments, with the exception of measurements near instrument detection limits. The causes of the divergence in absolute HONO concentrations were unclear, and may in part have been due to spatial variability, i.e. differences in instrument location and/or inlet position, but this observation may have been more associative than casual
    corecore