63 research outputs found

    Impact of the G84E variant on HOXB13 gene and protein expression in formalin-fixed, paraffin-embedded prostate tumours

    Get PDF
    The HOXB13 G84E variant is associated with risk of prostate cancer (PCa), however the role this variant plays in PCa development is unknown. This study examined 751 cases, 450 relatives and 355 controls to determine the contribution of this variant to PCa risk in Tasmania and investigated HOXB13 gene and protein expression in tumours from nine G84E heterozygote variant and 13 wild-type carriers. Quantitative PCR and immunohistochemistry showed that HOXB13 gene and protein expression did not differ between tumour samples from variant and wild-type carriers. Allele-specific transcription revealed that two of seven G84E carriers transcribed both the variant and wild-type allele, while five carriers transcribed the wild-type allele. Methylation of surrounding CpG sites was lower in the variant compared to the wild-type allele, however overall methylation across the region was very low. Notably, tumour characteristics were less aggressive in the two variant carriers that transcribed the variant allele compared to the five that did not. This study has shown that HOXB13 expression does not differ between tumour tissue of G84E variant carriers and non-carriers. Intriguingly, the G84E variant allele was rarely transcribed in carriers, suggesting that HOXB13 expression may be driven by the wild-type allele in the majority of carriers

    Time-Dependent, HIV-Tat-Induced Perturbation of Human Neurons In Vitro: Towards a Model for the Molecular Pathology of HIV-Associated Neurocognitive Disorders

    Get PDF
    A significant proportion of human immunodeficiency virus type 1 (HIV)-positive individuals are affected by the cognitive, motor and behavioral dysfunction that characterizes HIV-associated neurocognitive disorders (HAND). While the molecular etiology of HAND remains largely uncharacterized, HIV transactivator of transcription (HIV-Tat) is thought to be an important etiological cause. Here we have used mass spectrometry (MS)-based discovery proteomics to identify the quantitative, cell-wide changes that occur when non-transformed, differentiated human neurons are treated with HIV-Tat over time. We identified over 4000 protein groups (false discovery rate <0.01) in this system with 131, 118 and 45 protein groups differentially expressed at 6, 24 and 48 h post treatment, respectively. Alterations in the expression of proteins involved in gene expression and cytoskeletal maintenance were particularly evident. In tandem with proteomic evidence of cytoskeletal dysregulation we observed HIV-Tat induced functional alterations, including a reduction of neuronal intrinsic excitability as assessed by patch-clamp electrophysiology. Our findings may be relevant for understanding in vivo molecular mechanisms in HAND

    Impact of the G84E variant on HOXB13 gene and protein expression in formalin-fixed, paraffin-embedded prostate tumours

    Get PDF
    The HOXB13 G84E variant is associated with risk of prostate cancer (PCa), however the role this variant plays in PCa development is unknown. This study examined 751 cases, 450 relatives and 355 controls to determine the contribution of this variant to PCa risk in Tasmania and investigated HOXB13 gene and protein expression in tumours from nine G84E heterozygote variant and 13 wild-type carriers. Quantitative PCR and immunohistochemistry showed that HOXB13 gene and protein expression did not differ between tumour samples from variant and wild-type carriers. Allele-specific transcription revealed that two of seven G84E carriers transcribed both the variant and wild-type allele, while five carriers transcribed the wild-type allele. Methylation of surrounding CpG sites was lower in the variant compared to the wild-type allele, however overall methylation across the region was very low. Notably, tumour characteristics were less aggressive in the two variant carriers that transcribed the variant allele compared to the five that did not. This study has shown that HOXB13 expression does not differ between tumour tissue of G84E variant carriers and non-carriers. Intriguingly, the G84E variant allele was rarely transcribed in carriers, suggesting that HOXB13 expression may be driven by the wild-type allele in the majority of carriers

    Impact of the G84E variant on HOXB13 gene and protein expression in formalin-fixed, paraffin-embedded prostate tumours

    Get PDF
    The HOXB13 G84E variant is associated with risk of prostate cancer (PCa), however the role this variant plays in PCa development is unknown. This study examined 751 cases, 450 relatives and 355 controls to determine the contribution of this variant to PCa risk in Tasmania and investigated HOXB13 gene and protein expression in tumours from nine G84E heterozygote variant and 13 wild-type carriers. Quantitative PCR and immunohistochemistry showed that HOXB13 gene and protein expression did not differ between tumour samples from variant and wild-type carriers. Allele-specific transcription revealed that two of seven G84E carriers transcribed both the variant and wild-type allele, while five carriers transcribed the wild-type allele. Methylation of surrounding CpG sites was lower in the variant compared to the wild-type allele, however overall methylation across the region was very low. Notably, tumour characteristics were less aggressive in the two variant carriers that transcribed the variant allele compared to the five that did not. This study has shown that HOXB13 expression does not differ between tumour tissue of G84E variant carriers and non-carriers. Intriguingly, the G84E variant allele was rarely transcribed in carriers, suggesting that HOXB13 expression may be driven by the wild-type allele in the majority of carriers

    Global Control of Motor Neuron Topography Mediated by the Repressive Actions of a Single Hox Gene

    Get PDF
    In the developing spinal cord, regional and combinatorial activities of Hox transcription factors are critical in controlling motor neuron fates along the rostrocaudal axis, exemplified by the precise pattern of limb innervation by more than fifty Hox-dependent motor pools. The mechanisms by which motor neuron diversity is constrained to limb levels are, however, not well understood. We show that a single Hox gene, Hoxc9, has an essential role in organizing the motor system through global repressive activities. Hoxc9 is required for the generation of thoracic motor columns, and in its absence, neurons acquire the fates of limb-innervating populations. Unexpectedly, multiple Hox genes are derepressed in Hoxc9 mutants, leading to motor pool disorganization and alterations in the connections by thoracic and forelimb-level subtypes. Genome-wide analysis of Hoxc9 binding suggests that this mode of repression is mediated by direct interactions with Hox regulatory elements, independent of chromatin marks typically associated with repressed Hox genes.National Institutes of Health (U.S.) (P01NS055923

    Targeted, High-Resolution RNA Sequencing of Non-coding Genomic Regions Associated With Neuropsychiatric Functions

    Get PDF
    The human brain is one of the last frontiers of biomedical research. Genome-wide association studies (GWAS) have succeeded in identifying thousands of haplotype blocks associated with a range of neuropsychiatric traits, including disorders such as schizophrenia, Alzheimer’s and Parkinson’s disease. However, the majority of single nucleotide polymorphisms (SNPs) that mark these haplotype blocks fall within non-coding regions of the genome, hindering their functional validation. While some of these GWAS loci may contain cis-acting regulatory DNA elements such as enhancers, we hypothesized that many are also transcribed into non-coding RNAs that are missing from publicly available transcriptome annotations. Here, we use targeted RNA capture (‘RNA CaptureSeq’) in combination with nanopore long-read cDNA sequencing to transcriptionally profile 1,023 haplotype blocks across the genome containing non-coding GWAS SNPs associated with neuropsychiatric traits, using post-mortem human brain tissue from three neurologically healthy donors. We find that the majority (62%) of targeted haplotype blocks, including 13% of intergenic blocks, are transcribed into novel, multi-exonic RNAs, most of which are not yet recorded in GENCODE annotations. We validated our findings with short-read RNA-seq, providing orthogonal confirmation of novel splice junctions and enabling a quantitative assessment of the long-read assemblies. Many novel transcripts are supported by independent evidence of transcription including cap analysis of gene expression (CAGE) data and epigenetic marks, and some show signs of potential functional roles. We present these transcriptomes as a preliminary atlas of non-coding transcription in human brain that can be used to connect neurological phenotypes with gene expression

    Selection-Free Zinc-Finger Nuclease Engineering by Context-Dependent Assembly (CoDA)

    Get PDF
    Engineered zinc-finger nucleases (ZFNs) enable targeted genome modification. Here we describe Context-Dependent Assembly (CoDA), a platform for engineering ZFNs using only standard cloning techniques or custom DNA synthesis. Using CoDA ZFNs, we rapidly altered 20 genes in zebrafish, Arabidopsis, and soybean. The simplicity and efficacy of CoDA will enable broad adoption of ZFN technology and make possible large-scale projects focused on multi-gene pathways or genome-wide alterations

    The development of a HAMstring InjuRy (HAMIR) index to mitigate injury risk through innovative imaging, biomechanics, and data analytics : Protocol for an observational cohort study

    Get PDF
    Background The etiology of hamstring strain injury (HSI) in American football is multi-factorial and understanding these risk factors is paramount to developing predictive models and guiding prevention and rehabilitation strategies. Many player-games are lost due to the lack of a clear understanding of risk factors and the absence of effective methods to minimize re-injury. This paper describes the protocol that will be followed to develop the HAMstring InjuRy (HAMIR) index risk prediction models for HSI and re-injury based on morphological, architectural, biomechanical and clinical factors in National Collegiate Athletic Association Division I collegiate football players. Methods A 3-year, prospective study will be conducted involving collegiate football student-athletes at four institutions. Enrolled participants will complete preseason assessments of eccentric hamstring strength, on-field sprinting biomechanics and muscle–tendon volumes using magnetic-resonance imaging (MRI). Athletic trainers will monitor injuries and exposure for the duration of the study. Participants who sustain an HSI will undergo a clinical assessment at the time of injury along with MRI examinations. Following completion of structured rehabilitation and return to unrestricted sport participation, clinical assessments, MRI examinations and sprinting biomechanics will be repeated. Injury recurrence will be monitored through a 6-month follow-up period. HAMIR index prediction models for index HSI injury and re-injury will be constructed. Discussion The most appropriate strategies for reducing risk of HSI are likely multi-factorial and depend on risk factors unique to each athlete. This study will be the largest-of-its-kind (1200 player-years) to gather detailed information on index and recurrent HSI, and will be the first study to simultaneously investigate the effect of morphological, biomechanical and clinical variables on risk of HSI in collegiate football athletes. The quantitative HAMIR index will be formulated to identify an athlete’s propensity for HSI, and more importantly, identify targets for injury mitigation, thereby reducing the global burden of HSI in high-level American football players. Trial Registration The trial is prospectively registered on ClinicalTrials.gov (NCT05343052; April 22, 2022)

    Validation of ‘Somnivore’, a Machine Learning Algorithm for Automated Scoring and Analysis of Polysomnography Data

    Get PDF
    Manual scoring of polysomnography data is labor-intensive and time-consuming, and most existing software does not account for subjective differences and user variability. Therefore, we evaluated a supervised machine learning algorithm, SomnivoreTM, for automated wake–sleep stage classification. We designed an algorithm that extracts features from various input channels, following a brief session of manual scoring, and provides automated wake-sleep stage classification for each recording. For algorithm validation, polysomnography data was obtained from independent laboratories, and include normal, cognitively-impaired, and alcohol-treated human subjects (total n = 52), narcoleptic mice and drug-treated rats (total n = 56), and pigeons (n = 5). Training and testing sets for validation were previously scored manually by 1–2 trained sleep technologists from each laboratory. F-measure was used to assess precision and sensitivity for statistical analysis of classifier output and human scorer agreement. The algorithm gave high concordance with manual visual scoring across all human data (wake 0.91 ± 0.01; N1 0.57 ± 0.01; N2 0.81 ± 0.01; N3 0.86 ± 0.01; REM 0.87 ± 0.01), which was comparable to manual inter-scorer agreement on all stages. Similarly, high concordance was observed across all rodent (wake 0.95 ± 0.01; NREM 0.94 ± 0.01; REM 0.91 ± 0.01) and pigeon (wake 0.96 ± 0.006; NREM 0.97 ± 0.01; REM 0.86 ± 0.02) data. Effects of classifier learning from single signal inputs, simple stage reclassification, automated removal of transition epochs, and training set size were also examined. In summary, we have developed a polysomnography analysis program for automated sleep-stage classification of data from diverse species. Somnivore enables flexible, accurate, and high-throughput analysis of experimental and clinical sleep studies
    • …
    corecore